zoukankan      html  css  js  c++  java
  • CF992B Nastya Studies Informatics 数学(因子) 暴力求解 第三道

    Nastya Studies Informatics
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Today on Informatics class Nastya learned about GCD and LCM (see links below). Nastya is very intelligent, so she solved all the tasks momentarily and now suggests you to solve one of them as well.

    We define a pair of integers (a, bgood, if GCD(a, b) = x and LCM(a, b) = y, where GCD(a, b) denotes the greatest common divisor of a and b, and LCM(a, b) denotes the least common multiple of a and b.

    You are given two integers x and y. You are to find the number of good pairs of integers (a, b) such that l ≤ a, b ≤ r. Note that pairs (a, b) and (b, a) are considered different if a ≠ b.

    Input

    The only line contains four integers l, r, x, y (1 ≤ l ≤ r ≤ 109, 1 ≤ x ≤ y ≤ 109).

    Output

    In the only line print the only integer — the answer for the problem.

    Examples
    input
    Copy
    1 2 1 2
    output
    Copy
    2
    input
    Copy
    1 12 1 12
    output
    Copy
    4
    input
    Copy
    50 100 3 30
    output
    Copy
    0
    Note

    In the first example there are two suitable good pairs of integers (a, b): (1, 2) and (2, 1).

    In the second example there are four suitable good pairs of integers (a, b): (1, 12), (12, 1), (3, 4) and (4, 3).

    In the third example there are good pairs of integers, for example, (3, 30), but none of them fits the condition l ≤ a, b ≤ r.

    给你四个数l,r,a,b,问在l到r的范围内有多少对数(两个数不能相同,顺序可以不同)满足gcd(x,y)=a,lcm(x,y)=b

    枚举b的因子个数,再看这些因子每每两个的最大公约数是否等于a,等于a满足条件情况加一

    #include <map>
    #include <set>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define debug(a) cout << #a << " " << a << endl
    using namespace std;
    const int maxn = 1e3 + 10;
    typedef long long ll;
    ll gcd( ll p, ll q ) {
        if( p == 0 ) {
            return q;
        }
        if( q == 0 ) {
            return p;
        }
        return gcd( q, p%q );
    }
    int main(){
        std::ios::sync_with_stdio(false);
        ll l, r, a, b;
        //cout << gcd( 16, 4 ) << endl;
        while( cin >> l >> r >> a >> b ) {
            ll num = 0;
            vector<ll> e;
            for( ll i = 1; i * i <= b; i ++ ) {
                if( b % i == 0 ) {
                    e.push_back(i);
                    if( i != b/i ) {
                        e.push_back(b/i);
                    }
                    //debug(i),debug(b/i);
                }
            }
            for( ll i = 0; i < e.size(); i ++ ) {
                for( ll j = 0; j < e.size(); j ++ ) {
                    if( gcd( e[i], e[j] ) == a && e[i] * e[j] == a * b
                       && e[i] >= l && e[i] <= r && e[j] >= l && e[j] <= r ) {
                        num ++;
                    }
                }
            }
            cout << num << endl;
        }
        return 0;
    }
    彼时当年少,莫负好时光。
  • 相关阅读:
    Resharper的使用
    SQL Server 占用CPU较高的解决方法
    014 FPGA千兆网UDP通信
    012 PCIe总线的基础知识
    008 PCI设备BAR空间的初始化
    016 基于FPGA的网口通信实例设计【转载】
    015 FPGA千兆网TCP通信【转载】
    006 PCI总线的桥与配置(一)
    004 PCI Express体系结构(四)
    007 PCI总线的桥与配置(二)
  • 原文地址:https://www.cnblogs.com/l609929321/p/9210618.html
Copyright © 2011-2022 走看看