It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in Zabaikalsky region), wants to rent three displays to highlight an important problem.
There are nn displays placed along a road, and the ii-th of them can display a text with font size sisi only. Maria Stepanovna wants to rent such three displays with indices i<j<ki<j<k that the font size increases if you move along the road in a particular direction. Namely, the condition si<sj<sksi<sj<sk should be held.
The rent cost is for the ii-th display is cici. Please determine the smallest cost Maria Stepanovna should pay.
The first line contains a single integer nn (3≤n≤30003≤n≤3000) — the number of displays.
The second line contains nn integers s1,s2,…,sns1,s2,…,sn (1≤si≤1091≤si≤109) — the font sizes on the displays in the order they stand along the road.
The third line contains nn integers c1,c2,…,cnc1,c2,…,cn (1≤ci≤1081≤ci≤108) — the rent costs for each display.
If there are no three displays that satisfy the criteria, print -1. Otherwise print a single integer — the minimum total rent cost of three displays with indices i<j<ki<j<k such that si<sj<sksi<sj<sk.
5
2 4 5 4 10
40 30 20 10 40
90
3
100 101 100
2 4 5
-1
10
1 2 3 4 5 6 7 8 9 10
10 13 11 14 15 12 13 13 18 13
33
In the first example you can, for example, choose displays 11, 44 and 55, because s1<s4<s5s1<s4<s5 (2<4<102<4<10), and the rent cost is 40+10+40=9040+10+40=90.
In the second example you can't select a valid triple of indices, so the answer is -1.
题意: 给你n个数,每个数有两个权值(a,b),问取三个数,要求这三个数的a值递增,满足要求的最小三个数的和,没有满足要求的条件输出NO
暴力解法:
遍历中间一个数,然后两个循环分别找比他大的和比他小的,然后记录最小值
dp解法:
dp[i][j],i为第几个选择的数,j是选择的数的位置
这样的话,状态转移方程是:
dp[1][i] 每个位置的数
dp[2][j]这个位置与前面任意位置组合成的递增的两个的数
dp[3][i]这个位置与前面两个位置的组合成递增的三个的数
dp[2][j]=min(dp[2][j],dp[1][i]+dp[1][j]);
dp[3][j]=min(dp[3][j],dp[2][i]+dp[1][j]);
暴力代码:
#include <map> #include <set> #include <cmath> #include <queue> #include <cstdio> #include <vector> #include <string> #include <cstring> #include <iostream> #include <algorithm> #define debug(a) cout << #a << " " << a << endl using namespace std; const int maxn = 1e6 + 10; const int mod = 1e9 + 7; typedef long long ll; ll a[maxn], b[maxn]; int main(){ std::ios::sync_with_stdio(false); ll n; while( cin >> n ) { for( ll i = 0; i < n; i ++ ) { cin >> a[i]; } for( ll i = 0; i < n; i ++ ) { cin >> b[i]; } ll ans = 1e12; bool flag = false; for( ll i = 1; i < n; i ++ ) { ll min1 = 1e12, min2 = 1e12; for( ll j = i+1; j < n; j ++ ) { if( a[i] < a[j] ) { min1 = min( min1, b[j] ); } } for( ll j = 0; j < i; j ++ ) { if( a[i] > a[j] ) { min2 = min( min2, b[j] ); } } if( min1 != 1e12 && min2 != 1e12 ) { flag = true; ans = min( ans, min1 + min2 + b[i] ); } } if( flag ) { cout << ans << endl; } else { cout << -1 << endl; } } return 0; }
dp代码:
#include <map> #include <set> #include <cmath> #include <queue> #include <cstdio> #include <vector> #include <string> #include <cstring> #include <iostream> #include <algorithm> #define debug(a) cout << #a << " " << a << endl using namespace std; const int maxn = 3*1e3 + 10; const int mod = 1e9 + 7; typedef long long ll; ll a[maxn], b[maxn], dp[maxn][maxn]; int main(){ std::ios::sync_with_stdio(false); ll n; while( cin >> n ) { for( ll i = 0; i < n; i ++ ) { cin >> a[i]; dp[2][i] = 1e12, dp[3][i] = 1e12; } for( ll i = 0; i < n; i ++ ) { cin >> b[i]; } ll ans = 1e12; for( ll j = 1; j < n; j ++ ) { for( ll i = 0; i < j; i ++ ) { if( a[i] < a[j] ) { dp[2][j] = min( dp[2][j] , b[i] + b[j] ); } } } for( ll j = 2; j < n; j ++ ) { for( ll i = 0; i < j; i ++ ) { if( a[i] < a[j] ) { dp[3][j] = min( dp[3][j], dp[2][i] + b[j] ); } } ans = min( ans, dp[3][j] ); } if( ans != 1e12 ) { cout << ans << endl; } else { cout << -1 << endl; } } return 0; }