Kiki & Little Kiki 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3078 Accepted Submission(s): 1642
Problem Description
There are n lights in a circle numbered from 1 to n. The left of light 1 is light n, and the left of light k (1< k<= n) is the light k-1.At time of 0, some of them turn on, and others turn off.
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Input
The input contains one or more data sets. The first line of each data set is an integer m indicate the time, the second line will be a string T, only contains '0' and '1' , and its length n will not exceed 100. It means all lights in the circle from 1 to n.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
Output
For each data set, output all lights' state at m seconds in one line. It only contains character '0' and '1.
Sample Input
1
0101111
10
100000001
Sample Output
1111000
001000010
Source
Recommend
题意:给你n个灯泡,每个灯泡根据其左边的灯泡的开关(1代表开,0代表关)来决定自身是否要发生改变,开就发生改变,关则不变,1号灯泡的左边是n号灯泡,问经过m秒后n个灯泡是开还是关
分析:因为m可以很大,所以这里得用到矩阵快速幂做题。
这是另外一种形式的快速幂。首先当然是先找递推式:f(n) = ( f(n-1) + f(n) ) % 2,得到1代表开,0代表关
然后我们就可以写出矩阵式,不难得到:
| f(1) f(2) ... f(n) | | f(1) f(2) ... f(n) |
| 0 0 ... 0 | x | 0 0 ... 0 |
| ... ... ... ... | | ... ... ... ... |
| 0 0 ... 0 | | 0 0 ... 0 |
然后根据矩阵式套矩阵快速幂模板就行
#include <map> #include <set> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <vector> #include <string> #include <cstring> #include <iostream> #include <algorithm> #define debug(a) cout << #a << " " << a << endl using namespace std; const int maxn = 110; //注意空间的大小,开多了会炸程序,尤其在程序中有多个矩阵的时候,最好开到刚刚符合题目要求 const int mod = 2; typedef long long ll; struct matrix { ll a[maxn][maxn]; }; matrix base, ans; ll n; string s; matrix multip( matrix x, matrix y ) { matrix tmp; for( ll i = 0; i < s.length(); i ++ ) { for( ll j = 0; j < s.length(); j ++ ) { tmp.a[i][j] = 0; for( ll k = 0; k < s.length(); k ++ ) { tmp.a[i][j] = ( tmp.a[i][j] + x.a[i][k] * y.a[k][j] + mod ) % mod; } } } return tmp; } void f( ll x ) { while( x ) { if( x&1 ) { ans = multip( ans, base ); } base = multip( base, base ); x /= 2; } } int main() { while( cin >> n >> s ) { memset( ans.a, 0, sizeof(ans.a) ); memset( base.a, 0, sizeof(base.a) ); for( ll i = 0; i < s.length(); i ++ ) { ans.a[0][i] = s[i]-'0'; } for( ll i = 0; i < s.length(); i ++ ) { if( i != s.length()-1 ) { base.a[i][i] = base.a[i][i+1] = 1; } else { base.a[i][i] = base.a[i][0] = 1; } } f(n); for( ll i = 0; i < s.length(); i ++ ) { cout << ans.a[0][i]; } cout << endl; } return 0; }