zoukankan      html  css  js  c++  java
  • 牛客多校第六场 C Generation I 组合数学 阶乘逆元模板

    链接:https://www.nowcoder.com/acm/contest/144/C
    来源:牛客网

    Oak is given N empty and non-repeatable sets which are numbered from 1 to N.

    Now Oak is going to do N operations. In the i-th operation, he will insert an integer x between 1 and M to every set indexed between i and N.

    Oak wonders how many different results he can make after the N operations. Two results are different if and only if there exists a set in one result different from the set with the same index in another result.

    Please help Oak calculate the answer. As the answer can be extremely large, output it modulo 998244353.

    输入描述:

    The input starts with one line containing exactly one integer T which is the number of test cases. (1 ≤ T ≤ 20)

    Each test case contains one line with two integers N and M indicating the number of sets and the range of integers. (1 ≤ N ≤ 10

    18

    , 1 ≤ M ≤ 10

    18

    , 

    )

    输出描述:

    For each test case, output "Case #x: y" in one line (without quotes), where x is the test case number (starting from 1) and y is the number of different results modulo 998244353.

    示例1

    输入

    复制
    2
    2 2
    3 4

    输出

    复制
    Case #1: 4
    Case #2: 52

    题意:有n个set(没有重复元素),有无限个1~m,第i次操作可以从中选一个元素往set i~n里面插入 
    求有多少种可能结果(只要有一个set不是完全相同)
    分析:
    参考博客:
    AC代码:
    #include <map>
    #include <set>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <bitset>
    #include <cstring>
    #include <iomanip>
    #include <iostream>
    #include <algorithm>
    #define ls (r<<1)
    #define rs (r<<1|1)
    #define debug(a) cout << #a << " " << a << endl
    using namespace std;
    typedef long long ll;
    const ll maxn = 1e6 + 10;
    const double eps = 1e-8;
    const ll mod = 998244353;
    const ll inf = 1e9;
    const double pi = acos(-1.0);
    ll inv[maxn];
    ll qow( ll a, ll b ) {
        ll ans = 1;
        while(b) {
            if(b&1) {
                ans = ans*a%mod;
            }
            a = a*a%mod;
            b /= 2;
        }
        return ans;
    }
    void init() { //求阶乘逆元
        inv[1] = 1;
        for( ll i = 2; i <= maxn-10; i ++ ) {
            inv[i] = (mod-mod/i)*inv[mod%i]%mod;
        }
    }
    int main() {
        ll T;
        scanf("%lld",&T);
        init();
        for( ll cas = 1, n, m; cas <= T; cas ++ ) {
            scanf("%lld%lld",&n,&m);
            ll A = m%mod, C = 1, ans = 0, M = min(n,m);
            n = n%mod, m = m%mod;
            for( ll i = 1; i <= M; i ++ ) {
                ans += A*C%mod;
                ans %= mod;
                A = (m-i)%mod*A%mod, C = (n-i)%mod*C%mod*inv[i]%mod;
            }
            printf("Case #%lld: %lld
    ",cas,ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    Mongodb复制集配置
    Alluxio部署(集群模式)
    【性能-windows端口限制】TPS上不去,应用无压力只有cpu5%,tomcat线程最高1500,增大并发出现connect 报错
    SQL优化(三)—— 索引、explain分析
    vbs,修改文件名
    Fiddler的详细介绍
    Fiddler 抓包工具总结
    从零开始学习jQuery (一) 开天辟地入门篇
    Jmeter关联之正则表达式提取器(完整版)
    Jmeter实现百分比业务比例
  • 原文地址:https://www.cnblogs.com/l609929321/p/9560261.html
Copyright © 2011-2022 走看看