zoukankan      html  css  js  c++  java
  • 牛客多校第六场 C Generation I 组合数学 阶乘逆元模板

    链接:https://www.nowcoder.com/acm/contest/144/C
    来源:牛客网

    Oak is given N empty and non-repeatable sets which are numbered from 1 to N.

    Now Oak is going to do N operations. In the i-th operation, he will insert an integer x between 1 and M to every set indexed between i and N.

    Oak wonders how many different results he can make after the N operations. Two results are different if and only if there exists a set in one result different from the set with the same index in another result.

    Please help Oak calculate the answer. As the answer can be extremely large, output it modulo 998244353.

    输入描述:

    The input starts with one line containing exactly one integer T which is the number of test cases. (1 ≤ T ≤ 20)

    Each test case contains one line with two integers N and M indicating the number of sets and the range of integers. (1 ≤ N ≤ 10

    18

    , 1 ≤ M ≤ 10

    18

    , 

    )

    输出描述:

    For each test case, output "Case #x: y" in one line (without quotes), where x is the test case number (starting from 1) and y is the number of different results modulo 998244353.

    示例1

    输入

    复制
    2
    2 2
    3 4

    输出

    复制
    Case #1: 4
    Case #2: 52

    题意:有n个set(没有重复元素),有无限个1~m,第i次操作可以从中选一个元素往set i~n里面插入 
    求有多少种可能结果(只要有一个set不是完全相同)
    分析:
    参考博客:
    AC代码:
    #include <map>
    #include <set>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <bitset>
    #include <cstring>
    #include <iomanip>
    #include <iostream>
    #include <algorithm>
    #define ls (r<<1)
    #define rs (r<<1|1)
    #define debug(a) cout << #a << " " << a << endl
    using namespace std;
    typedef long long ll;
    const ll maxn = 1e6 + 10;
    const double eps = 1e-8;
    const ll mod = 998244353;
    const ll inf = 1e9;
    const double pi = acos(-1.0);
    ll inv[maxn];
    ll qow( ll a, ll b ) {
        ll ans = 1;
        while(b) {
            if(b&1) {
                ans = ans*a%mod;
            }
            a = a*a%mod;
            b /= 2;
        }
        return ans;
    }
    void init() { //求阶乘逆元
        inv[1] = 1;
        for( ll i = 2; i <= maxn-10; i ++ ) {
            inv[i] = (mod-mod/i)*inv[mod%i]%mod;
        }
    }
    int main() {
        ll T;
        scanf("%lld",&T);
        init();
        for( ll cas = 1, n, m; cas <= T; cas ++ ) {
            scanf("%lld%lld",&n,&m);
            ll A = m%mod, C = 1, ans = 0, M = min(n,m);
            n = n%mod, m = m%mod;
            for( ll i = 1; i <= M; i ++ ) {
                ans += A*C%mod;
                ans %= mod;
                A = (m-i)%mod*A%mod, C = (n-i)%mod*C%mod*inv[i]%mod;
            }
            printf("Case #%lld: %lld
    ",cas,ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    夺命雷公狗---Redis---4-安全性
    夺命雷公狗---Redis---3-Redis常用命令
    夺命雷公狗---Redis---2-Redis数据结构
    夺命雷公狗---Redis---1-Redis介绍
    夺命雷公狗---PHP开发APP接口---5(核心技术之缓存技术)
    夺命雷公狗---PHP开发APP接口---4(综合通信方式封装)
    夺命雷公狗---PHP开发APP接口---3(XML方式封装接口数据方法)
    夺命雷公狗---PHP开发APP接口---2(手动编写XML)
    夺命雷公狗---PHP开发APP接口---1(手动编写json)
    夺命雷公狗ThinkPHP项目之----商城10商品属性管理
  • 原文地址:https://www.cnblogs.com/l609929321/p/9560261.html
Copyright © 2011-2022 走看看