zoukankan      html  css  js  c++  java
  • Python PySnooper 案例

    print 函数已老,DeBug 该靠 PySnooper 了~

    deBug Python 代码再也不需要 print 了。只要给有疑问的代码加上装饰器,各种信息一目了然,找出错误也就非常简单了。

    这个名为 PySnooper 的项目是刚开源的,仅仅一天就获得了 2K+ 的 Star 量,当然这「一天」还没结束,这个收藏量也会继续刷新。

    项目地址:https://github.com/cool-RR/pysnooper

    Python 怎样 DeBug?

    如果写着写着模型,发现模型不 work 了,那么你该怎样找出 Python 的错误语句?这种错误一般与语法无关,而是某个变量的运算发生了错误。接下来我们就要慢慢找哪个地方有问题了,这里最常见、最直观的方法就是 print 大法。把我们怀疑的变量打印出来,总会找到异常的地方。

    如果代码中嵌入了单元测试,例如 assert 语句,那么还能缩小一些怀疑范围。但通常我们都要多次尝试,打印多个变量才能找到错误的地方。在 PyTorch 或 Keras 这样的动态计算图还好,打印出来的直接是一个值,像 TensorFlow 这样的静态计算图,打印出来是张量信息而不是值,这就很尴尬了。

    实际上不止是机器学习,在我们写 Python 的时候,总是想搞清楚为什么写的代码在运行时有点不大对。很多读者乐于使用断点等成熟的 DeBug 工具,也有的直接使用 print 大法找错误的地方。但现在我们不需要担心了,本文将介绍一个新的开源工具,它信心满满地呼吁到:「不要再使用 print 函数来 DeBug 啦~」

    极简DeBug工具PySnooper

    一般情况下,想要知道哪一行代码在运行、哪一行不运行、本地变量的值是多少时,大部分人会使用 print 函数,在关键部分打印某个或某组变量的值、形状、类型等信息。

    而 PySnooper 让你能快速地获得这些信息,且相比之下它不需要细致地写 print 函数,只需要向感兴趣的函数增加一个装饰器就行了。我们会得到该函数的详细 log,包含哪行代码能运行、什么时候运行以及本地变量变化的确切时间。

    相比于其他代码智能工具,PySnooper 为何如此优秀?因为不需要任何设置,你就可以在劣等、不规则的企业代码库上使用 PySnooper。只需要加个装饰器,并为日志输出地址指定路径就行了。

    这样说可能不太直观,下面我们可以具体看个案例,PySnooper 的优秀就能一目了然。

    PySnooper 案例

    下面项目作者写了一个函数以将数值转换为二进制码,该函数返回的是一个二进制列表。下面我们将装饰器 @pysnooper.snoop() 加到该函数上,就大功告成了。

    import pysnooper
    
    @pysnooper.snoop()
    def number_to_bits(number):
        if number:
            bits = []
            while number:
                number, remainder = divmod(number, 2)
                bits.insert(0, remainder)
            return bits
        else:
            return [0]
    
    number_to_bits(6)

    该函数返回的日志如下,我们可以看到在调用 number_to_bits 函数时,赋予参数 number 的初始值为 6。然后,PySnooper 就还是对着源代码一行行分析了。

    如上分析所示,函数每创建一个新变量,那么这个变量的值、这个变量的变化都会展示出来。而且 PySnooper 还将循环展开,因此变化的细节更加明确。最终 6 的二进制版本应该是 [1, 1, 0],它的变化过程也展示在 bits 变量中。

    现在通过这些详细信息,PySnooper 再也不用担心我们用 print 函数强行 deBug 了。

    PySnooper 详细特征

    如果标准错误输出难以获得,或者太长了,那么可以将输出定位到本地文件:

    @pysnooper.snoop('/my/log/file.log')

    查看一些非本地变量的值:

    @pysnooper.snoop(variables=('foo.bar', 'self.whatever'))

    展示我们函数中调用函数的 snoop 行:

    @pysnooper.snoop(depth=2)

    将所有 snoop 行以某个前缀开始,更容易定位和找到:

    @pysnooper.snoop(prefix='ZZZ ')

    演示 PySnooper

    下面我们最开始尝试使用 PySnooper 获取 TensorFlow 的信息,如果它能获取各种张量信息,那可就太强大了。

    首先使用 pip 安装包:

    pip install pysnooper

    果然,TensorFlow 这种静态图并不能很好地获取信息,读者也可尝试一下。后面我们试了试 NumPy,希望能获取整个计算流的信息。如下代码所示,我们创建了两个数组变量,并且 2×2 的矩阵会连乘多次,如果能追踪到这种连乘,那就比较好处理错误。

    import pysnooper
    import numpy as np
    
    @pysnooper.snoop()
    def multi_matmul(times):
        x = np.random.rand(2, 2)
        w = np.random.rand(2, 2)
    
        for i in range(times):
            x = np.matmul(x, w)
        return x
    
    multi_matmul(3)

    对于 NumPy,该工具确实能追踪所有可疑变量的变化过程。当然在实际运算中,矩阵乘法的维度会非常大,我们可以直接追踪形状(Shape),而不是具体的值。

     

  • 相关阅读:
    《程序猿闭门造车》之NBPM工作流引擎
    CryptographicException异常处理方法
    nodejs简单模仿web.net web api
    Windows Mobile设备操作演示准备工作小记
    PPT定时器小记
    winDBG排错小记
    Ubuntu 16.04应用布署小记
    Ubuntu 16.04环境布署小记
    Ubuntu 16.04系统布署小记
    Dokuwiki布署小记
  • 原文地址:https://www.cnblogs.com/lab-zj/p/13321537.html
Copyright © 2011-2022 走看看