zoukankan      html  css  js  c++  java
  • 动态规划之博弈问题

    读完本文,你可以去力扣拿下如下题目:

    877.石子游戏

    -----------

    上一篇文章 几道智力题 中讨论到一个有趣的「石头游戏」,通过题目的限制条件,这个游戏是先手必胜的。但是智力题终究是智力题,真正的算法问题肯定不会是投机取巧能搞定的。所以,本文就借石头游戏来讲讲「假设两个人都足够聪明,最后谁会获胜」这一类问题该如何用动态规划算法解决。

    博弈类问题的套路都差不多,下文举例讲解,其核心思路是在二维 dp 的基础上使用元组分别存储两个人的博弈结果。掌握了这个技巧以后,别人再问你什么俩海盗分宝石,俩人拿硬币的问题,你就告诉别人:我懒得想,直接给你写个算法算一下得了。

    我们「石头游戏」改的更具有一般性:

    你和你的朋友面前有一排石头堆,用一个数组 piles 表示,piles[i] 表示第 i 堆石子有多少个。你们轮流拿石头,一次拿一堆,但是只能拿走最左边或者最右边的石头堆。所有石头被拿完后,谁拥有的石头多,谁获胜。

    石头的堆数可以是任意正整数,石头的总数也可以是任意正整数,这样就能打破先手必胜的局面了。比如有三堆石头 piles = [1, 100, 3],先手不管拿 1 还是 3,能够决定胜负的 100 都会被后手拿走,后手会获胜。

    假设两人都很聪明,请你设计一个算法,返回先手和后手的最后得分(石头总数)之差。比如上面那个例子,先手能获得 4 分,后手会获得 100 分,你的算法应该返回 -96。

    这样推广之后,这个问题算是一道 Hard 的动态规划问题了。博弈问题的难点在于,两个人要轮流进行选择,而且都贼精明,应该如何编程表示这个过程呢?

    还是强调多次的套路,首先明确 dp 数组的含义,然后和股票买卖系列问题类似,只要找到「状态」和「选择」,一切就水到渠成了。

    PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

    一、定义 dp 数组的含义

    定义 dp 数组的含义是很有技术含量的,同一问题可能有多种定义方法,不同的定义会引出不同的状态转移方程,不过只要逻辑没有问题,最终都能得到相同的答案。

    我建议不要迷恋那些看起来很牛逼,代码很短小的奇技淫巧,最好是稳一点,采取可解释性最好,最容易推广的设计思路。本文就给出一种博弈问题的通用设计框架。

    介绍 dp 数组的含义之前,我们先看一下 dp 数组最终的样子:

    1

    下文讲解时,认为元组是包含 first 和 second 属性的一个类,而且为了节省篇幅,将这两个属性简写为 fir 和 sec。比如按上图的数据,我们说 dp[1][3].fir = 10dp[0][1].sec = 3

    先回答几个读者可能提出的问题:

    这个二维 dp table 中存储的是元组,怎么编程表示呢?这个 dp table 有一半根本没用上,怎么优化?很简单,都不要管,先把解题的思路想明白了再谈也不迟。

    以下是对 dp 数组含义的解释:

    dp[i][j].fir 表示,对于 piles[i...j] 这部分石头堆,先手能获得的最高分数。
    dp[i][j].sec 表示,对于 piles[i...j] 这部分石头堆,后手能获得的最高分数。
    
    举例理解一下,假设 piles = [3, 9, 1, 2],索引从 0 开始
    dp[0][1].fir = 9 意味着:面对石头堆 [3, 9],先手最终能够获得 9 分。
    dp[1][3].sec = 2 意味着:面对石头堆 [9, 1, 2],后手最终能够获得 2 分。
    

    我们想求的答案是先手和后手最终分数之差,按照这个定义也就是 dp[0][n-1].fir - dp[0][n-1].sec,即面对整个 piles,先手的最优得分和后手的最优得分之差。

    二、状态转移方程

    写状态转移方程很简单,首先要找到所有「状态」和每个状态可以做的「选择」,然后择优。

    根据前面对 dp 数组的定义,状态显然有三个:开始的索引 i,结束的索引 j,当前轮到的人。

    dp[i][j][fir or sec]
    其中:
    0 <= i < piles.length
    i <= j < piles.length
    

    对于这个问题的每个状态,可以做的选择有两个:选择最左边的那堆石头,或者选择最右边的那堆石头。 我们可以这样穷举所有状态:

    n = piles.length
    for 0 <= i < n:
        for j <= i < n:
            for who in {fir, sec}:
                dp[i][j][who] = max(left, right)
    
    

    上面的伪码是动态规划的一个大致的框架,股票系列问题中也有类似的伪码。这道题的难点在于,两人是交替进行选择的,也就是说先手的选择会对后手有影响,这怎么表达出来呢?

    根据我们对 dp 数组的定义,很容易解决这个难点,写出状态转移方程:

    dp[i][j].fir = max(piles[i] + dp[i+1][j].sec, piles[j] + dp[i][j-1].sec)
    dp[i][j].fir = max(    选择最左边的石头堆     ,     选择最右边的石头堆     )
    # 解释:我作为先手,面对 piles[i...j] 时,有两种选择:
    # 要么我选择最左边的那一堆石头,然后面对 piles[i+1...j]
    # 但是此时轮到对方,相当于我变成了后手;
    # 要么我选择最右边的那一堆石头,然后面对 piles[i...j-1]
    # 但是此时轮到对方,相当于我变成了后手。
    
    if 先手选择左边:
        dp[i][j].sec = dp[i+1][j].fir
    if 先手选择右边:
        dp[i][j].sec = dp[i][j-1].fir
    # 解释:我作为后手,要等先手先选择,有两种情况:
    # 如果先手选择了最左边那堆,给我剩下了 piles[i+1...j]
    # 此时轮到我,我变成了先手;
    # 如果先手选择了最右边那堆,给我剩下了 piles[i...j-1]
    # 此时轮到我,我变成了先手。
    

    根据 dp 数组的定义,我们也可以找出 base case,也就是最简单的情况:

    dp[i][j].fir = piles[i]
    dp[i][j].sec = 0
    其中 0 <= i == j < n
    # 解释:i 和 j 相等就是说面前只有一堆石头 piles[i]
    # 那么显然先手的得分为 piles[i]
    # 后手没有石头拿了,得分为 0
    

    2

    这里需要注意一点,我们发现 base case 是斜着的,而且我们推算 dp[i][j] 时需要用到 dp[i+1][j] 和 dp[i][j-1]:

    3

    所以说算法不能简单的一行一行遍历 dp 数组,而要斜着或者倒着遍历数组:

    4

    PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

    三、代码实现

    如何实现这个 fir 和 sec 元组呢,你可以用 python,自带元组类型;或者使用 C++ 的 pair 容器;或者用一个三维数组 dp[n][n][2],最后一个维度就相当于元组;或者我们自己写一个 Pair 类:

    class Pair {
        int fir, sec;
        Pair(int fir, int sec) {
            this.fir = fir;
            this.sec = sec;
        }
    }
    

    然后直接把我们的状态转移方程翻译成代码即可,注意我们要倒着遍历数组:

    /* 返回游戏最后先手和后手的得分之差 */
    int stoneGame(int[] piles) {
    /* 返回游戏最后先手和后手的得分之差 */
    int stoneGame(int[] piles) {
        int n = piles.length;
        // 初始化 dp 数组
        Pair[][] dp = new Pair[n][n];
        for (int i = 0; i < n; i++) 
            for (int j = i; j < n; j++)
                dp[i][j] = new Pair(0, 0);
        // 填入 base case
        for (int i = 0; i < n; i++) {
            dp[i][i].fir = piles[i];
            dp[i][i].sec = 0;
        }
        // 斜着遍历数组
        for (int i = n - 2; i >= 0; i--) {
            for (int j = i + 1; j < n; j++) {
                int j = l + i - 1;
                // 先手选择最左边或最右边的分数
                int left = piles[i] + dp[i+1][j].sec;
                int right = piles[j] + dp[i][j-1].sec;
                // 套用状态转移方程
                // 先手肯定会选择更大的结果,后手的选择随之改变
                if (left > right) {
                    dp[i][j].fir = left;
                    dp[i][j].sec = dp[i+1][j].fir;
                } else {
                    dp[i][j].fir = right;
                    dp[i][j].sec = dp[i][j-1].fir;
                }
            }
        }
        Pair res = dp[0][n-1];
        return res.fir - res.sec;
    }
    }
    

    动态规划解法,如果没有状态转移方程指导,绝对是一头雾水,但是根据前面的详细解释,读者应该可以清晰理解这一大段代码的含义。

    而且,注意到计算 dp[i][j] 只依赖其左边和下边的元素,所以说肯定有优化空间,转换成一维 dp,想象一下把二维平面压扁,也就是投影到一维。但是,一维 dp 比较复杂,可解释性很差,大家就不必浪费这个时间去理解了。

    四、最后总结

    本文给出了解决博弈问题的动态规划解法。博弈问题的前提一般都是在两个聪明人之间进行,编程描述这种游戏的一般方法是二维 dp 数组,数组中通过元组分别表示两人的最优决策。

    之所以这样设计,是因为先手在做出选择之后,就成了后手,后手在对方做完选择后,就变成了先手。这种角色转换使得我们可以重用之前的结果,典型的动态规划标志。

    读到这里的朋友应该能理解算法解决博弈问题的套路了。学习算法,一定要注重算法的模板框架,而不是一些看起来牛逼的思路,也不要奢求上来就写一个最优的解法。不要舍不得多用空间,不要过早尝试优化,不要惧怕多维数组。dp 数组就是存储信息避免重复计算的,随便用,直到咱满意为止。

    Reference:

    这篇文章参考了 YouTube 视频 https://www.youtube.com/watch?v=WxpIHvsu1RI

    _____________

    我的 在线电子书 有 100 篇原创文章,手把手带刷 200 道力扣题目,建议收藏!对应的 GitHub 算法仓库 已经获得了 70k star,欢迎标星!

  • 相关阅读:
    点滴积累【JS】---JS小功能(JS实现侧悬浮浮动)
    点滴积累【JS】---JS小功能(JS实现隐藏显示侧边栏,也就是分享栏的隐藏显示)
    点滴积累【JS】---JS小功能(JS实现排序)
    php修改排序,上移下移
    PHP获取上周、本周、上月、本月、本季度、上季度时间方法大全
    php简陋版实现微信公众号主动推送消息
    JQuery处理json与ajax返回JSON实例
    页面滚动动态加载数据,页面下拉自动加载内容 jquery
    CGI/FASTCGI/ISAPI区别
    CodeIgniter类库之Benchmarking Class ,计算代码的执行时间
  • 原文地址:https://www.cnblogs.com/labuladong/p/13933792.html
Copyright © 2011-2022 走看看