zoukankan      html  css  js  c++  java
  • 二叉树的序列化,就那几个框架,枯燥至极

    二叉树的序列化和反序列化

    JSON 的运用非常广泛,比如我们经常将变成语言中的结构体序列化成 JSON 字符串,存入缓存或者通过网络发送给远端服务,消费者接受 JSON 字符串然后进行反序列化,就可以得到原始数据了。这就是「序列化」和「反序列化」的目的,以某种固定格式组织字符串,使得数据可以独立于编程语言。

    那么假设现在有一棵用 Java 实现的二叉树,我想把它序列化字符串,然后用 C++ 读取这棵并还原这棵二叉树的结构,怎么办?这就需要对二叉树进行「序列化」和「反序列化」了。

    一、题目描述

    「二叉树的序列化与反序列化」就是给你输入一棵二叉树的根节点 root,要求你实现如下一个类:

    public class Codec {
    
        // 把一棵二叉树序列化成字符串
        public String serialize(TreeNode root) {}
    
        // 把字符串反序列化成二叉树
        public TreeNode deserialize(String data) {}
    }
    

    我们可以用 serialize 方法将二叉树序列化成字符串,用 deserialize 方法将序列化的字符串反序列化成二叉树,至于以什么格式序列化和反序列化,这个完全由你决定。

    比如说输入如下这样一棵二叉树:

    serialize 方法也许会把它序列化成字符串 2,1,#,6,3,#,#,其中 # 表示 null 指针,那么把这个字符串再输入 deserialize 方法,依然可以还原出这棵二叉树。也就是说,这两个方法会成对儿使用,你只要保证他俩能够自洽就行了。

    想象一下,二叉树结该是一个二维平面内的结构,而序列化出来的字符串是一个线性的一维结构。所谓的序列化不过就是把结构化的数据「打平」,其实就是在考察二叉树的遍历方式

    二叉树的遍历方式有哪些?递归遍历方式有前序遍历,中序遍历,后序遍历;迭代方式一般是层级遍历。本文就把这些方式都尝试一遍,来实现 serialize 方法和 deserialize 方法。

    二、前序遍历解法

    前文 学习数据结构和算法的框架思维 说过了二叉树的几种遍历方式,前序遍历框架如下:

    void traverse(TreeNode root) {
        if (root == null) return;
    
        // 前序遍历的代码
    
        traverse(root.left);
        traverse(root.right);
    }
    

    真的很简单,在递归遍历两棵子树之前写的代码就是前序遍历代码,那么请你看一看如下伪码:

    LinkedList<Integer> res;
    void traverse(TreeNode root) {
        if (root == null) {
            // 暂且用数字 -1 代表空指针 null
            res.addLast(-1);
            return;
        }
    
        /****** 前序遍历位置 ******/
        res.addLast(root.val);
        /***********************/
    
        traverse(root.left);
        traverse(root.right);
    }
    

    调用 traverse 函数之后,你是否可以立即想出这个 res 列表中元素的顺序是怎样的?比如如下二叉树(# 代表空指针 null),可以直观看出前序遍历做的事情:

    那么 res = [1,2,-1,4,-1,-1,3,-1,-1],这就是将二叉树「打平」到了一个列表中,其中 -1 代表 null。

    那么,将二叉树打平到一个字符串中也是完全一样的:

    // 代表分隔符的字符
    String SEP = ",";
    // 代表 null 空指针的字符
    String NULL = "#";
    // 用于拼接字符串
    StringBuilder sb = new StringBuilder();
    
    /* 将二叉树打平为字符串 */
    void traverse(TreeNode root, StringBuilder sb) {
        if (root == null) {
            sb.append(NULL).append(SEP);
            return;
        }
    
        /****** 前序遍历位置 ******/
        sb.append(root.val).append(SEP);
        /***********************/
    
        traverse(root.left, sb);
        traverse(root.right, sb);
    }
    

    StringBuilder 可以用于高效拼接字符串,所以也可以认为是一个列表,用 , 作为分隔符,用 # 表示空指针 null,调用完 traverse 函数后,StringBuilder 中的字符串应该是 1,2,#,4,#,#,3,#,#,

    PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

    至此,我们已经可以写出序列化函数 serialize 的代码了:

    String SEP = ",";
    String NULL = "#";
    
    /* 主函数,将二叉树序列化为字符串 */
    String serialize(TreeNode root) {
        StringBuilder sb = new StringBuilder();
        serialize(root, sb);
        return sb.toString();
    }
    
    /* 辅助函数,将二叉树存入 StringBuilder */
    void serialize(TreeNode root, StringBuilder sb) {
        if (root == null) {
            sb.append(NULL).append(SEP);
            return;
        }
    
        /****** 前序遍历位置 ******/
        sb.append(root.val).append(SEP);
        /***********************/
    
        serialize(root.left, sb);
        serialize(root.right, sb);
    }
    

    现在,思考一下如何写 deserialize 函数,将字符串反过来构造二叉树。

    首先我们可以把字符串转化成列表:

    String data = "1,2,#,4,#,#,3,#,#,";
    String[] nodes = data.split(",");
    

    这样,nodes 列表就是二叉树的前序遍历结果,问题转化为:如何通过二叉树的前序遍历结果还原一棵二叉树?

    PS:一般语境下,单单前序遍历结果是不能还原二叉树结构的,因为缺少空指针的信息,至少要得到前、中、后序遍历中的两种才能还原二叉树。但是这里的 node 列表包含空指针的信息,所以只使用 node 列表就可以还原二叉树。

    根据我们刚才的分析,nodes 列表就是一棵打平的二叉树:

    那么,反序列化过程也是一样,先确定根节点 root,然后遵循前序遍历的规则,递归生成左右子树即可

    /* 主函数,将字符串反序列化为二叉树结构 */
    TreeNode deserialize(String data) {
        // 将字符串转化成列表
        LinkedList<String> nodes = new LinkedList<>();
        for (String s : data.split(SEP)) {
            nodes.addLast(s);
        }
        return deserialize(nodes);
    }
    
    /* 辅助函数,通过 nodes 列表构造二叉树 */
    TreeNode deserialize(LinkedList<String> nodes) {
        if (nodes.isEmpty()) return null;
    
        /****** 前序遍历位置 ******/
        // 列表最左侧就是根节点
        String first = nodes.removeFirst();
        if (first.equals(NULL)) return null;
        TreeNode root = new TreeNode(Integer.parseInt(first));
        /***********************/
    
        root.left = deserialize(nodes);
        root.right = deserialize(nodes);
    
        return root;
    }
    

    我们发现,根据树的递归性质,nodes 列表的第一个元素就是一棵树的根节点,所以只要将列表的第一个元素取出作为根节点,剩下的交给递归函数去解决即可。

    PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

    三、后序遍历解法

    二叉树的后续遍历框架:

    void traverse(TreeNode root) {
        if (root == null) return;
        traverse(root.left);
        traverse(root.right);
    
        // 后序遍历的代码
    }
    

    明白了前序遍历的解法,后序遍历就比较容易理解了,我们首先实现 serialize 序列化方法,只需要稍微修改辅助方法即可:

    /* 辅助函数,将二叉树存入 StringBuilder */
    void serialize(TreeNode root, StringBuilder sb) {
        if (root == null) {
            sb.append(NULL).append(SEP);
            return;
        }
        
        serialize(root.left, sb);
        serialize(root.right, sb);
    
        /****** 后序遍历位置 ******/
        sb.append(root.val).append(SEP);
        /***********************/
    }
    

    我们把对 StringBuilder 的拼接操作放到了后续遍历的位置,后序遍历导致结果的顺序发生变化:

    null,null,null,4,2,null,null,3,1,

    关键的难点在于,如何实现后序遍历的 deserialize 方法呢?是不是也简单地将关键代码放到后序遍历的位置就行了呢:

    /* 辅助函数,通过 nodes 列表构造二叉树 */
    TreeNode deserialize(LinkedList<String> nodes) {
        if (nodes.isEmpty()) return null;
    
        root.left = deserialize(nodes);
        root.right = deserialize(nodes);
    
        /****** 后序遍历位置 ******/
        String first = nodes.removeFirst();
        if (first.equals(NULL)) return null;
        TreeNode root = new TreeNode(Integer.parseInt(first));
        /***********************/
    
        return root;
    }
    

    没这么简单,显然上述代码是错误的,变量都没声明呢,就开始用了?生搬硬套肯定是行不通的,回想刚才我们前序遍历方法中的 deserialize 方法,第一件事情在做什么?

    deserialize 方法首先寻找 root 节点的值,然后递归计算左右子节点。那么我们这里也应该顺着这个基本思路走,后续遍历中,root 节点的值能不能找到?再看一眼刚才的图:

    可见,root 的值是列表的最后一个元素。我们应该从后往前取出列表元素,先用最后一个元素构造 root,然后递归调用生成 root 的左右子树。注意,根据上图,从后往前在 nodes 列表中取元素,一定要先构造 root.right 子树,后构造 root.left 子树

    看完整代码:

    /* 主函数,将字符串反序列化为二叉树结构 */
    TreeNode deserialize(String data) {
        LinkedList<String> nodes = new LinkedList<>();
        for (String s : data.split(SEP)) {
            nodes.addLast(s);
        }
        return deserialize(nodes);
    }
    
    /* 辅助函数,通过 nodes 列表构造二叉树 */
    TreeNode deserialize(LinkedList<String> nodes) {
        if (nodes.isEmpty()) return null;
        // 从后往前取出元素
        String last = nodes.removeLast();
        if (last.equals(NULL)) return null;
        TreeNode root = new TreeNode(Integer.parseInt(last));
        // 限构造右子树,后构造左子树
        root.right = deserialize(nodes);
        root.left = deserialize(nodes);
        
        return root;
    }
    

    至此,后续遍历实现的序列化、反序列化方法也都实现了。

    四、中序遍历解法

    先说结论,中序遍历的方式行不通,因为无法实现反序列化方法 deserialize

    序列化方法 serialize 依然容易,只要把字符串的拼接操作放到中序遍历的位置就行了:

    /* 辅助函数,将二叉树存入 StringBuilder */
    void serialize(TreeNode root, StringBuilder sb) {
        if (root == null) {
            sb.append(NULL).append(SEP);
            return;
        }
    
        serialize(root.left, sb);
        /****** 中序遍历位置 ******/
        sb.append(root.val).append(SEP);
        /***********************/
        serialize(root.right, sb);
    }
    

    但是,我们刚才说了,要想实现反序列方法,首先要构造 root 节点。前序遍历得到的 nodes 列表中,第一个元素是 root 节点的值;后序遍历得到的 nodes 列表中,最后一个元素是 root 节点的值。

    你看上面这段中序遍历的代码,root 的值被夹在两棵子树的中间,也就是在 nodes 列表的中间,我们不知道确切的索引位置,所以无法找到 root 节点,也就无法进行反序列化。

    五、层级遍历解法

    首先,先写出层级遍历二叉树的代码框架:

    void traverse(TreeNode root) {
        if (root == null) return;
        // 初始化队列,将 root 加入队列
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        
        while (!q.isEmpty()) {
            TreeNode cur = q.poll();
    
            /* 层级遍历代码位置 */
            System.out.println(root.val);
            /*****************/
    
            if (cur.left != null) {
                q.offer(cur.left);
            }
            
            if (cur.right != null) {
                q.offer(cur.right);
            }
        }
    }
    

    上述代码是标准的二叉树层级遍历框架,从上到下,从左到右打印每一层二叉树节点的值,可以看到,队列 q 中不会存在 null 指针。

    不过我们在反序列化的过程中是需要记录空指针 null 的,所以可以把标准的层级遍历框架略作修改:

    void traverse(TreeNode root) {
        if (root == null) return;
        // 初始化队列,将 root 加入队列
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        
        while (!q.isEmpty()) {
            TreeNode cur = q.poll();
    
            /* 层级遍历代码位置 */
            if (cur == null) continue;
            System.out.println(root.val);
            /*****************/
    
            q.offer(cur.left);
            q.offer(cur.right);
        }
    }
    

    这样也可以完成层级遍历,只不过我们把对空指针的检验从「将元素加入队列」的时候改成了「从队列取出元素」的时候。

    那么我们完全仿照这个框架即可写出序列化方法:

    String SEP = ",";
    String NULL = "#";
    
    /* 将二叉树序列化为字符串 */
    String serialize(TreeNode root) {
        if (root == null) return "";
        StringBuilder sb = new StringBuilder();
        // 初始化队列,将 root 加入队列
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        
        while (!q.isEmpty()) {
            TreeNode cur = q.poll();
            
            /* 层级遍历代码位置 */
            if (cur == null) {
                sb.append(NULL).append(SEP);
                continue;
            }
            sb.append(cur.val).append(SEP);
            /*****************/
    
            q.offer(cur.left);
            q.offer(cur.right);
        }
        
        return sb.toString();
    }
    

    层级遍历序列化得出的结果如下图:

    可以看到,每一个非空节点都会对应两个子节点,那么反序列化的思路也是用队列进行层级遍历,同时用索引 i 记录对应子节点的位置

    /* 将字符串反序列化为二叉树结构 */
    TreeNode deserialize(String data) {
        if (data.isEmpty()) return null;
        String[] nodes = data.split(SEP);
        // 第一个元素就是 root 的值
        TreeNode root = new TreeNode(Integer.parseInt(nodes[0]));
    
        // 队列 q 记录父节点,将 root 加入队列
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
    
        for (int i = 1; i < nodes.length; ) {
            // 队列中存的都是父节点
            TreeNode parent = q.poll();
            // 父节点对应的左侧子节点的值
            String left = nodes[i++];
            if (!left.equals(NULL)) {
                parent.left = new TreeNode(Integer.parseInt(left));
                q.offer(parent.left);
            } else {
                parent.left = null;
            }
            // 父节点对应的右侧子节点的值
            String right = nodes[i++];
            if (!right.equals(NULL)) {
                parent.right = new TreeNode(Integer.parseInt(right));
                q.offer(parent.right);
            } else {
                parent.right = null;
            }
        }
        return root;
    }
    

    这段代码可以考验一下你的框架思维。仔细看一看 for 循环部分的代码,发现这不就是标准层级遍历的代码衍生出来的嘛:

    while (!q.isEmpty()) {
        TreeNode cur = q.poll();
    
        if (cur.left != null) {
            q.offer(cur.left);
        }
        
        if (cur.right != null) {
            q.offer(cur.right);
        }
    }
    

    只不过,标准的层级遍历在操作二叉树节点 TreeNode,而我们的函数在操作 nodes[i],这也恰恰是反序列化的目的嘛。

    到这里,我们对于二叉树的序列化和反序列化的几种方法就全部讲完了。

    相关推荐:

    _____________

    我的 在线电子书 有 100 篇原创文章,手把手带刷 200 道力扣题目,建议收藏!对应的 GitHub 算法仓库 已经获得了 70k star,欢迎标星!

  • 相关阅读:
    上机练习3
    上机练习2
    上机练习1
    第一次作业
    第二次作业
    第一次作业
    第二次作业(4)
    第二次作业(3)
    第二次作业(2)
    第二次作业(1)
  • 原文地址:https://www.cnblogs.com/labuladong/p/13975069.html
Copyright © 2011-2022 走看看