zoukankan      html  css  js  c++  java
  • 区间调度之区间合并问题

    读完本文,你可以去力扣拿下如下题目:

    56.合并区间

    -----------

    上篇文章用贪心算法解决了区间调度问题:给你很多区间,让你求其中的最大不重叠子集。

    其实对于区间相关的问题,还有很多其他类型,本文就来讲讲区间合并问题(Merge Interval)。

    LeetCode 第 56 题就是一道相关问题,题目很好理解:

    title

    我们解决区间问题的一般思路是先排序,然后观察规律。

    PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

    一、思路

    一个区间可以表示为 [start, end],前文聊的区间调度问题,需要按 end 排序,以便满足贪心选择性质。而对于区间合并问题,其实按 endstart 排序都可以,不过为了清晰起见,我们选择按 start 排序。

    1

    显然,对于几个相交区间合并后的结果区间 xx.start 一定是这些相交区间中 start 最小的,x.end 一定是这些相交区间中 end 最大的。

    2

    由于已经排了序,x.start 很好确定,求 x.end 也很容易,可以类比在数组中找最大值的过程:

    int max_ele = arr[0];
    for (int i = 1; i < arr.length; i++) 
        max_ele = max(max_ele, arr[i]);
    return max_ele;
    

    二、代码

    # intervals 形如 [[1,3],[2,6]...]
    def merge(intervals):
        if not intervals: return []
        # 按区间的 start 升序排列
        intervals.sort(key=lambda intv: intv[0])
        res = []
        res.append(intervals[0])
        
        for i in range(1, len(intervals)):
            curr = intervals[i]
            # res 中最后一个元素的引用
            last = res[-1]
            if curr[0] <= last[1]:
                # 找到最大的 end
                last[1] = max(last[1], curr[1])
            else:
                # 处理下一个待合并区间
                res.append(curr)
        return res
    

    看下动画就一目了然了:

    3

    至此,区间合并问题就解决了。本文篇幅短小,因为区间合并只是区间问题的一个类型,后续还有一些区间问题。本想把所有问题类型都总结在一篇文章,但有读者反应,长文只会收藏不会看... 所以还是分成小短文吧,读者有什么看法可以在留言板留言交流。

    本文终,希望对你有帮助。

    _____________

    我的 在线电子书 有 100 篇原创文章,手把手带刷 200 道力扣题目,建议收藏!对应的 GitHub 算法仓库 已经获得了 70k star,欢迎标星!

  • 相关阅读:
    设计模式-外观模式
    多线程面试笔试题-1
    final 关键字
    java 继承 初始化顺序
    java内部类
    Python-面向对象-静态方法
    接口自动化测试框架搭建
    使用yaml设计测试用例进行单接口测试
    数据驱动测试--对excel文件的操作
    TCP协议详解
  • 原文地址:https://www.cnblogs.com/labuladong/p/13975807.html
Copyright © 2011-2022 走看看