记忆搜索总是一个快速的方法(这里假设测试用例中s1和s2的长度都不超过(2^16) - 1 ), 当然用记忆搜索的,往往就可以写成DP的形式的,不用担心大数据时栈溢出了
#include <iostream> #include <cstdlib> #include <string> #include <vector> #include <unordered_map> using namespace std; class Solution { private: unordered_map<unsigned int, bool> memo; public: bool isInterleave(string s1, string s2, string s3) { memo.clear(); return dfs(s1, 0, s2, 0, s3); } bool dfs(string& s1, int apos, string &s2, int bpos, string &s3) { unsigned int id = (apos << 16) | bpos; auto iter = memo.find(id); if (iter != memo.end()) return iter->second; int cpos = apos + bpos; if (apos == s1.length() && bpos == s2.length() && cpos == s3.length()) { memo.insert(make_pair(id, true)); return true; } bool res = false; if (apos < s1.length() && s1[apos] == s3[cpos]) { if (dfs(s1, apos + 1, s2, bpos, s3)) { res = true; } } if (!res && bpos < s2.length() && s2[bpos] == s3[cpos]) { if (dfs(s1, apos, s2, bpos + 1, s3)) { res = true; } } memo.insert(make_pair(id, res)); return res; } }; int main() { Solution s; cout<<s.isInterleave("aabcc", "dbbca", "aadbbbaccc")<<endl; return 0; }
简化dp,空间O(max(s1.len, s2.len))
class Solution { public: bool isInterleave(string s1, string s2, string s3) { return dp(s1, s2, s3); } bool dp_helper(string &s1, string &s2, string &s3) { int rows = s1.length() + 1; int cols = s2.length() + 1; vector<bool> dp(cols, false); dp[0] = true; // init the dp array for (int i=1; i<cols; i++) { if (s3[i - 1] != s2[i - 1]) break; dp[i] = true; } // simplified dp using O( max(len(s1), len(s2)) ) space for (int i=1; i<rows; i++) { // whether all chars from s1 or not dp[0] = dp[0] && (s1[i-1] == s3[i-1]); for (int j=1; j<cols; j++) { int pos = i + j - 1; if (dp[j] && s1[i-1] == s3[pos]) { // char from s1, if so, keep dp[j] unchanged( = true) } else if (dp[j-1] && s2[j-1] == s3[pos]) { // char from s2 dp[j] = true; } else { dp[j] = false; } } } return dp[cols - 1]; } bool dp(string &s1, string &s2, string &s3) { int la = s1.length(); int lb = s2.length(); if (la + lb != s3.length()) return false; if (la < lb) { return dp_helper(s1, s2, s3); } else { return dp_helper(s2, s1, s3); } } };
懒得化简了
class Solution { public: bool isInterleave(string s1, string s2, string s3) { int rows = s1.size() + 1; int cols = s2.size() + 1; int slen = s3.size(); if (slen != s1.size() + s2.size()) { return false; } vector<vector<bool> > dp(rows, vector<bool>(cols, false)); dp[0][0] = true; for (int i=1; i<cols; i++) { if (!dp[0][i-1] || s2[i-1] != s3[i-1]) { break; } dp[0][i] = true; } for (int i=1; i<rows; i++) { if (!dp[i-1][0] || s1[i-1] != s3[i-1]) { break; } dp[i][0] = true; } for (int i=1; i<rows; i++) { for (int j=1; j<cols; j++) { dp[i][j] = (dp[i-1][j] && s1[i-1] == s3[i + j - 1]) || (dp[i][j-1] && s2[j-1] == s3[i + j - 1]); } } return dp[rows-1][cols-1]; } };