在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。
1、获取MNIST数据
MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔。
mnist = input_data.read_data_sets('./data/mnist', one_hot=True)
2、模型基本结构
本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一致,为784;输出层节点数与数字的类别数一致,为10;隐藏层节点数为50个;每次训练的mini-batch数量为64,;最大训练周期为50000。
1 inputSize = 784 2 outputSize = 10 3 hiddenSize = 50 4 batchSize = 64 5 trainCycle = 50000
3、输入层
输入层用于接收每次小批量样本的输入,先通过placeholder来进行占位,在训练时才传入具体的数据。值得注意的是,在生成输入层的tensor时,传入的shape中有一个‘None’,表示每次输入的样本的数量,该‘None’表示先不作具体的指定,在真正输入的时候再根据实际的数据来进行推断。这个很方便,但也是有条件的,也就是通过该方法返回的tensor不能使用简单的加(+)减(-)乘(*)除(/)符号来进行计算(否则将会报错),需要用TensorFlow中的相关函数来进行代替。
inputLayer = tf.placeholder(tf.float32, shape=[None, inputSize])
4、隐藏层
在神经网络中,隐藏层的作用主要是提取数据的特征(feature)。这里的权重参数采用了 tensorflow.truncated_normal() 函数来进行生成,与上次采用的 tensorflow.
random_normal() 不一样。这两者的作用都是生成指定形状、期望和标准差的符合正太分布随机变量。区别是 truncated_normal 函数对随机变量的范围有个限制(与期望的偏差在2个标准差之内,否则丢弃)。另外偏差项这里也使用了变量的形式,也可以采用常量来进行替代。
激活函数为sigmoid函数。
1 hiddenWeight = tf.Variable(tf.truncated_normal([inputSize, hiddenSize], mean=0, stddev=0.1)) 2 hiddenBias = tf.Variable(tf.truncated_normal([hiddenSize])) 3 hiddenLayer = tf.add(tf.matmul(inputLayer, hiddenWeight), hiddenBias) 4 hiddenLayer = tf.nn.sigmoid(hiddenLayer)
5、输出层
输出层与隐藏层类似,只是节点数不一样。
1 outputWeight = tf.Variable(tf.truncated_normal([hiddenSize, outputSize], mean=0, stddev=0.1)) 2 outputBias = tf.Variable(tf.truncated_normal([outputSize], mean=0, stddev=0.1)) 3 outputLayer = tf.add(tf.matmul(hiddenLayer, outputWeight), outputBias) 4 outputLayer = tf.nn.sigmoid(outputLayer)
6、输出标签
跟输入层一样,也是先占位,在最后训练的时候再传入具体的数据。标签,也就是每一个样本的正确分类。
outputLabel = tf.placeholder(tf.float32, shape=[None, outputSize])
7、损失函数
这里采用的是交叉熵损失函数。注意用的是v2版本,第一个版本已被TensorFlow声明为deprecated,准备废弃了。
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=outputLabel, logits=outputLayer))
8、优化器与目标函数
优化器采用了Adam梯度下降法,我试过了普通的GradientDescentOptimizer,效果不如Adam;也用过Adadelta,结果几乎收敛不了。
目标函数就是最小化损失函数。
optimizer = tf.train.AdamOptimizer()
target = optimizer.minimize(loss)
9、训练过程
先创建一个会话,然后初始化tensors,最后进行迭代训练。模型的收敛速度很快,在1000次的时候就达到了大概90%的正确率。
1 with tf.Session() as sess: 2 sess.run(tf.global_variables_initializer()) 3 4 for i in range(trainCycle): 5 batch = mnist.train.next_batch(batchSize) 6 sess.run(target, feed_dict={inputLayer: batch[0], outputLabel: batch[1]}) 7 8 if i % 1000 == 0: 9 corrected = tf.equal(tf.argmax(outputLabel, 1), tf.argmax(outputLayer, 1)) 10 accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32)) 11 accuracyValue = sess.run(accuracy, feed_dict={inputLayer: batch[0], outputLabel: batch[1]}) 12 print(i, 'train set accuracy:', accuracyValue)
模型训练输出:
10、测试训练结果
在测数据集上测试。准确率达到96%,比单层的神经网络好很多。
1 corrected = tf.equal(tf.argmax(outputLabel, 1), tf.argmax(outputLayer, 1)) 2 accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32)) 3 accuracyValue = sess.run(accuracy, feed_dict={inputLayer: mnist.test.images, outputLabel: mnist.test.labels}) 4 print("accuracy on test set:", accuracyValue)
测试集上的输出:
附:
完整代码如下:
1 import tensorflow as tf 2 from tensorflow.examples.tutorials.mnist import input_data 3 4 mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 5 6 inputSize = 784 7 outputSize = 10 8 hiddenSize = 50 9 batchSize = 64 10 trainCycle = 50000 11 12 # 输入层 13 inputLayer = tf.placeholder(tf.float32, shape=[None, inputSize]) 14 15 # 隐藏层 16 hiddenWeight = tf.Variable(tf.truncated_normal([inputSize, hiddenSize], mean=0, stddev=0.1)) 17 hiddenBias = tf.Variable(tf.truncated_normal([hiddenSize])) 18 hiddenLayer = tf.add(tf.matmul(inputLayer, hiddenWeight), hiddenBias) 19 hiddenLayer = tf.nn.sigmoid(hiddenLayer) 20 21 # 输出层 22 outputWeight = tf.Variable(tf.truncated_normal([hiddenSize, outputSize], mean=0, stddev=0.1)) 23 outputBias = tf.Variable(tf.truncated_normal([outputSize], mean=0, stddev=0.1)) 24 outputLayer = tf.add(tf.matmul(hiddenLayer, outputWeight), outputBias) 25 outputLayer = tf.nn.sigmoid(outputLayer) 26 27 # 标签 28 outputLabel = tf.placeholder(tf.float32, shape=[None, outputSize]) 29 30 # 损失函数 31 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=outputLabel, logits=outputLayer)) 32 33 # 优化器 34 optimizer = tf.train.AdamOptimizer() 35 36 # 训练目标 37 target = optimizer.minimize(loss) 38 39 # 训练 40 with tf.Session() as sess: 41 sess.run(tf.global_variables_initializer()) 42 43 for i in range(trainCycle): 44 batch = mnist.train.next_batch(batchSize) 45 sess.run(target, feed_dict={inputLayer: batch[0], outputLabel: batch[1]}) 46 47 if i % 1000 == 0: 48 corrected = tf.equal(tf.argmax(outputLabel, 1), tf.argmax(outputLayer, 1)) 49 accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32)) 50 accuracyValue = sess.run(accuracy, feed_dict={inputLayer: batch[0], outputLabel: batch[1]}) 51 print(i, 'train set accuracy:', accuracyValue) 52 53 # 测试 54 corrected = tf.equal(tf.argmax(outputLabel, 1), tf.argmax(outputLayer, 1)) 55 accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32)) 56 accuracyValue = sess.run(accuracy, feed_dict={inputLayer: mnist.test.images, outputLabel: mnist.test.labels}) 57 print("accuracy on test set:", accuracyValue) 58 59 sess.close()