---恢复内容开始---
一、全局变量与局部变量
在子程序中定义的变量称为局部变量,
在程序的一开始定义的变量称为全局变量。
name='lhf' def change_name(): #global name name='帅了一比' print('change_name',name) change_name() print(name) >>> change_name 帅了一比 lhf
name='lhf' def change_name(): global name name='帅了一比' print('change_name',name) change_name() print(name) >>> change_name 帅了一比 帅了一比
局部变量:在私人的小圈子内才可以被引用到。
全局变量:所有人都可以获得值,
NAME = "杠娘" def yangjian(): # NAME = "史正文" global NAME #NAME = "小东北" print('我要搞', NAME) def qupengfei(): NAME = "基" print('我要搞', NAME) yangjian() qupengfei() >>>> 我要搞 杠娘 我要搞 基
NAME = "杠娘" def yangjian(): # NAME = "史正文" global NAME NAME变为全局变量 NAME = "小东北" print('我要搞', NAME) def qupengfei(): #NAME = "基" print('我要搞', NAME) yangjian() qupengfei() >>>> 我要搞 小东北 我要搞 小东北
NAME = ["产品经理", "廖波湿"] def qupengfei(): global NAME NAME = ["阿毛"] NAME.append('XXOO') print('我要搞', NAME) qupengfei() >>> 我要搞 ['阿毛', 'XXOO']
总结:
全局变量变量名大写
局部变量变量名小写
优先读取局部变量,能读取全局变量,无法对全局变量重新赋值 NAME=“fff”,
# 但是对于可变类型,可以对内部元素进行操作
# 如果函数中有global关键字,变量本质上就是全局的那个变量,可读取可赋值 NAME=“fff”
二、函数的嵌套
①、按照同级别,从上往下执行。遇到函数,先编译,不执行
②内部包含global name,同一层出现name和global name的话 就会报错。如果name在global在里面一级,则不会报错。
name = '刚娘' def weihou(): name='陈卓' def weiweihou(): global name name='冷静' weiweihou() print(name) print(name) weihou() print(name) >>>> 刚娘 陈卓 冷静
③global带子全局变量,nonlocal 代指上一层变量
name = '刚娘' def weihou(): name='陈卓' def weiweihou(): nonlocal name name='冷静' weiweihou() print(name) print(name) weihou() print(name) >>>> 刚娘 冷静 刚娘
三、前向引用,函数即变量----引用前已经定义
def fool() 相当于变量的赋值操作。test=函数体!内存中的处理过程:
python一加载到def foo(),就相当于做了一个赋值操作。把函数内部的函数体都作为普通的“字符串”放入内存中。
内存调用-执行函数体的内容
所以:
调用bar(),调用各种各样的函数,所以:函数先定义后调用。遇到调用执行命令,函数的定义和函数体都必须已经加载到内存。
def fool(): print('from fool') bar() fool() #出现报错,执行fool过程之中,调用bar的时候,还未加载到内存。所以出现报错 def bar(): print('from bar')
3.1、定义域、作用域
作用域:同级作用
四、递归
4.1定义:
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
①有明确的判断条件,且判断条件在调用自身函数的前面:
②每次调用控制循环的字数都会减少一层。【见后面】
③循环的最后一程:有一个确定的返回值,之后层层递归回来,
4.2:
递归例子:N!阶层
举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n
,用函数fact(n)
表示,可以看出:
fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n
所以,fact(n)
可以表示为n x fact(n-1)
,只有n=1时需要特殊处理。
于是,fact(n)
用递归的方式写出来就是
def fact(n): if n==1: return 1 return n * fact(n - 1)
如果我们计算fact(5)
,可以根据函数定义看到计算过程如下:
===> fact(5) ===> 5 * fact(4) ===> 5 * (4 * fact(3)) ===> 5 * (4 * (3 * fact(2))) ===> 5 * (4 * (3 * (2 * fact(1)))) ===> 5 * (4 * (3 * (2 * 1))) ===> 5 * (4 * (3 * 2)) ===> 5 * (4 * 6) ===> 5 * 24 ===> 120
4.3、
例子②:递归问路_day-15函数递归还没看完!
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' import time person_list=['alex','wupeiqi','yuanhao','linhaifeng'] def ask_way(person_list): print('-'*60) if len(person_list) == 0: return '没人知道' person=person_list.pop(0) if person == 'linhaifeng': return '%s说:我知道,老男孩就在沙河汇德商厦,下地铁就是' %person print('hi 美男[%s],敢问路在何方' %person) print('%s回答道:我不知道,但念你慧眼识猪,你等着,我帮你问问%s...' %(person,person_list)) time.sleep(3) res=ask_way(person_list) # print('%s问的结果是: %res' %(person,res)) return res res=ask_way(person_list) print(res)
递归特性:
1. 必须有一个明确的结束条件
2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少
3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)
---恢复内容结束---
一、全局变量与局部变量
在子程序中定义的变量称为局部变量,
在程序的一开始定义的变量称为全局变量。
name='lhf' def change_name(): #global name name='帅了一比' print('change_name',name) change_name() print(name) >>> change_name 帅了一比 lhf
name='lhf' def change_name(): global name name='帅了一比' print('change_name',name) change_name() print(name) >>> change_name 帅了一比 帅了一比
局部变量:在私人的小圈子内才可以被引用到。
全局变量:所有人都可以获得值,
NAME = "杠娘" def yangjian(): # NAME = "史正文" global NAME #NAME = "小东北" print('我要搞', NAME) def qupengfei(): NAME = "基" print('我要搞', NAME) yangjian() qupengfei() >>>> 我要搞 杠娘 我要搞 基
NAME = "杠娘" def yangjian(): # NAME = "史正文" global NAME NAME变为全局变量 NAME = "小东北" print('我要搞', NAME) def qupengfei(): #NAME = "基" print('我要搞', NAME) yangjian() qupengfei() >>>> 我要搞 小东北 我要搞 小东北
NAME = ["产品经理", "廖波湿"] def qupengfei(): global NAME NAME = ["阿毛"] NAME.append('XXOO') print('我要搞', NAME) qupengfei() >>> 我要搞 ['阿毛', 'XXOO']
总结:
全局变量变量名大写
局部变量变量名小写
优先读取局部变量,能读取全局变量,无法对全局变量重新赋值 NAME=“fff”,
# 但是对于可变类型,可以对内部元素进行操作
# 如果函数中有global关键字,变量本质上就是全局的那个变量,可读取可赋值 NAME=“fff”
二、函数的嵌套
①、按照同级别,从上往下执行。遇到函数,先编译,不执行
②内部包含global name,同一层出现name和global name的话 就会报错。如果name在global在里面一级,则不会报错。
name = '刚娘' def weihou(): name='陈卓' def weiweihou(): global name name='冷静' weiweihou() print(name) print(name) weihou() print(name) >>>> 刚娘 陈卓 冷静
③global带子全局变量,nonlocal 代指上一层变量
name = '刚娘' def weihou(): name='陈卓' def weiweihou(): nonlocal name name='冷静' weiweihou() print(name) print(name) weihou() print(name) >>>> 刚娘 冷静 刚娘
三、前向引用,函数即变量----引用前已经定义
def fool() 相当于变量的赋值操作。test=函数体!内存中的处理过程:
python一加载到def foo(),就相当于做了一个赋值操作。把函数内部的函数体都作为普通的“字符串”放入内存中。
内存调用-执行函数体的内容
所以:
调用bar(),调用各种各样的函数,所以:函数先定义后调用。遇到调用执行命令,函数的定义和函数体都必须已经加载到内存。
def fool(): print('from fool') bar() fool() #出现报错,执行fool过程之中,调用bar的时候,还未加载到内存。所以出现报错 def bar(): print('from bar')
3.1、定义域、作用域
作用域:同级作用
四、递归
4.1定义:
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
①有明确的判断条件,且判断条件在调用自身函数的前面:
②每次调用控制循环的字数都会减少一层。【见后面】
③循环的最后一程:有一个确定的返回值,之后层层递归回来,
4.2:
递归例子:N!阶层
举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n
,用函数fact(n)
表示,可以看出:
fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n
所以,fact(n)
可以表示为n x fact(n-1)
,只有n=1时需要特殊处理。
于是,fact(n)
用递归的方式写出来就是
def fact(n): if n==1: return 1 return n * fact(n - 1)
如果我们计算fact(5)
,可以根据函数定义看到计算过程如下:
===> fact(5) ===> 5 * fact(4) ===> 5 * (4 * fact(3)) ===> 5 * (4 * (3 * fact(2))) ===> 5 * (4 * (3 * (2 * fact(1)))) ===> 5 * (4 * (3 * (2 * 1))) ===> 5 * (4 * (3 * 2)) ===> 5 * (4 * 6) ===> 5 * 24 ===> 120
4.3、
例子②:递归问路_day-15函数递归还没看完!
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' import time person_list=['alex','wupeiqi','yuanhao','linhaifeng'] def ask_way(person_list): print('-'*60) if len(person_list) == 0: return '没人知道' person=person_list.pop(0) if person == 'linhaifeng': return '%s说:我知道,老男孩就在沙河汇德商厦,下地铁就是' %person print('hi 美男[%s],敢问路在何方' %person) print('%s回答道:我不知道,但念你慧眼识猪,你等着,我帮你问问%s...' %(person,person_list)) time.sleep(3) res=ask_way(person_list) # print('%s问的结果是: %res' %(person,res)) return res res=ask_way(person_list) print(res)
递归特性:
1. 必须有一个明确的结束条件
2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少
3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)