zoukankan      html  css  js  c++  java
  • Codeforces Round #230 (Div. 2) 题解

    A.Nineteen

    题意:给你一堆字母,问最多组成的串中,最多有多少个子串是nineteen

    思路:直接统计个数,注意nineteenineteen是两个

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    char a[105];
    
    int main()
    {
      scanf("%s", a + 1);
      int len = strlen(a + 1);
      int cntn = 0, cnti = 0, cnte = 0, cntt = 0;
      for(int i = 1; i <= len; i++) {
        if(a[i] == 'n')cntn++;
        if(a[i] == 'i')cnti++;
        if(a[i] == 'e')cnte++;
        if(a[i] == 't')cntt++;
      }
      int ans = 0;
      cntn -= 3; cnti -= 1; cnte -=3; cntt -= 1;
      if(cntn < 0 || cnti < 0 || cnte < 0 || cntt < 0) {
        cntn = 0; cnti = 0; cnte = 0; cntt = 0;
      }
      else ans ++;
      // printf("test cntn == %d cnti == %d cnte == %d cntt == %d
    ",cntn, cnti, cnte, cntt);
      int as = min(cntn / 2, cnti);
      as = min(as, min(cnte / 3, cntt));
      ans += as;
      cout << ans << endl;
      return 0;
    }
    View Code

    B. Three matrices

        题意:给一个矩阵c,让构造出一个矩阵a和矩阵b,使的c = a + b,并且矩阵a中a[i][j] = a[j][i],矩阵b 中b[i][j] = - b[j][i]

        思路:对角线上可以让矩阵a直接等于c,让b矩阵的值为0,其他位置可以让a[i][j]与a[j][i]的值解出ab矩阵的值

        代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 200;
    
    double mp[maxn][maxn];
    double ansa[maxn][maxn], ansb[maxn][maxn];
    
    int main()
    {
      int n;
      scanf("%d", &n);
      for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= n; j++) {
          scanf("%lf", &mp[i][j]);
        }
      }
      for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= i; j++) {
          if(i == j) {
            ansa[i][j] = mp[i][j];
            ansb[i][j] = 0;
          }
          else {
            ansa[i][j] = (mp[i][j] + mp[j][i]) / 2.0;
            ansa[j][i] = ansa[i][j];
    
            ansb[i][j] = fabs(mp[i][j] - mp[j][i]) / 2.0;
            ansb[j][i] = -1.0 * ansb[i][j];
            if(mp[i][j] < mp[j][i])swap(ansb[i][j], ansb[j][i]);
          }
        }
      }
      for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= n; j++) {
          if(j > 1)printf(" ");
          printf("%f",ansa[i][j]);
        }
        puts("");
      }
      for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= n; j++) {
          if(j > 1) printf(" ");
          printf("%f",ansb[i][j]);
        }
        puts("");
      }
      return 0;
    }
    View Code

    C. Blocked Points

        题意:给你一个半径为n(4e7)的圆,问也有多少个点到圆的距离小于1

        思路:直接把每一个i(0~n)都枚举一下,每次维护前一个位置的值

        代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    int main()
    {
      long long n;
      scanf("%lld", &n);
      if(n == 0) {
        printf("1
    ");
        return 0;
      }
      long long ans = 0;
      long long pre = 0;
      for(long long i = 0; i <= n; i++) {
        long long as = (long long)(sqrt(1.0*(n*n-i*i)));
        ans ++;
        if(pre - as > 1) ans += pre - as - 1;
        pre = as;
      }
      ans --;
      cout << ans * 4 << endl;
      return 0;
    }
    View Code

    D. Tower of Hanoi

        题意:汉诺塔问题,有一个3*3的矩阵a,a[i][j]表示从第i个柱子移动到第j个柱子的代价,问把k个盘子移到第3个柱子上最少需要多少代价

    思路:定义dp[k][i][j]表示k个盘子从第i个柱子移动到第j个柱子的最小代价是多少,每次都有两种情况转移一种是k-1移动到2,然后k到3,然后2-》3,第二种是先移动到3,k到2,然后3到1,2到3,1到3

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long LL;
    int a[5][5];
    LL dp[45][5][5];
    
    int main()
    {
      for(int i = 1; i <= 3; i++) {
        for(int j = 1; j <= 3; j++) {
          scanf("%d", &a[i][j]);
        }
      }
      int n;
      scanf("%d", &n);
      for(int k = 1; k <= n; k++) {
        for(int i = 1; i <= 3; i++) {
          for(int j = 1; j <= 3; j++) {
            if(i != j) {
              LL as = dp[k - 1][i][6 - i - j] + a[i][j] + dp[k - 1][6 - i -j][j];
              LL qw = dp[k - 1][i][j] + a[i][6 - i - j] + dp[k - 1][j][i] + a[6 - i - j][j] + dp[k - 1][i][j];
              dp[k][i][j] = min (as, qw);
            }
          }
        }
      }
      cout << dp[n][1][3] << endl;
      return 0;
    }
    View Code

    E. Yet Another Number Sequence

        题意:定义sn表示∑(1~n)Fi * (i^k),Fi表示斐波那契数列,对1e9+7取模

        思路:拆成sn = sn-1 + (fn-1 * (n –1 + 1)^k ) + (fn-2 * (n – 2 + 2) ^k,然后矩阵快速幂

        代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long LL;
    
    const int MOD = 1e9 + 7;
    ///使用前要先对r,c赋值
    struct mat{
        long long a[90][90];
        int r,c;
        mat operator *(const mat &b)const{
            mat ret;
            for (int i=0;i<r;i++){
                for (int j=0;j<b.c;j++){
                    ret.a[i][j]=0;
                    for (int k=0;k<c;k++)
                        ret.a[i][j]+=a[i][k]*b.a[k][j],ret.a[i][j]%=MOD;
                }
            }
            ret.r=r;
            ret.c=b.c;
            return ret;
        }
        void init_unit(int x)
        {
            r=c=x;
            for(int i=0;i<r;i++){
                for(int j=0;j<c;j++){
                    if(i==j)a[i][j]=1;
                    else a[i][j]=0;
                }
            }
        }
    }unit;
    mat qmod(mat p,LL n){
        unit.init_unit(p.c);
        mat ans=unit;
        while(n){
            if(n&1)ans=p*ans;
            p=p*p;
            n>>=1;
        }
        return ans;
    }
    int k;
    LL n,c[45][45];
    void init()
    {
      memset(c, 0, sizeof(c));
      c[0][0] = 1;
      for(int i = 1; i <= 40; i++) {
        c[i][0] = c[i][i] = 1;
        for(int j = 1; j < i; j++) {
          c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % MOD;
        }
      }
    }
    mat A,B;
    
    int main()
    {
      init();
      while(~scanf("%lld%d", &n, &k)) {
        if(n == 1) printf("1
    ");
        else {
          A.r = A.c =2 * k + 3;
          memset(A.a, 0, sizeof(A.a));
          memset(B.a, 0, sizeof(B.a));
          A.a[0][0] = A.a[0][k + 1] = 1;
          for(int i = 0; i <= k; i++) {
            for(int j = 0; j <= i; j++) {
              A.a[i + 1][j + 1] = c[i][j];
              A.a[i + 1][j + k + 2] = (1LL << (i - j)) % MOD * c[i][j] %MOD;
            }
          }
          for(int i = k + 2; i <= 2 * k + 2; i++)
            A.a[i][i - (k + 1)] = 1;
          B.r = 2 * k + 3; B.c = 1;
          B.a[0][0] = 1;
          for(int i = 1; i <= k + 1; i++)
            B.a[i][0] = (1LL << i) % MOD;
          for(int i = k + 2; i <= 2 * k + 2; i++) 
            B.a[i][0] = 1;
          A = qmod(A, n - 2);
          A = A * B;
          printf("%lld
    ", (A.a[0][0] + A.a[k + 1][0]) % MOD);
        }
      }
      return 0;
    }
    View Code
  • 相关阅读:
    maven .assembly
    命令参数解析库JCommonder
    OWL,以及XML,RDF
    Ambari是什么?
    上海新桥>风景服务区>宁波江东区车管所 及返程路线
    武汉旅游地图(zz)
    武汉旅游(zz)
    上海市松江区 <> 上海市金山区枫泾·万枫东路ab6177,racehttp://live.racingchina.com/
    明中路明华路到第九人民医院路线
    月台路春申塘桥到虹桥火车站
  • 原文地址:https://www.cnblogs.com/lalalatianlalu/p/10491436.html
Copyright © 2011-2022 走看看