和svm差不多,感知机应该算svm的前身吧
import tensorflow as tf import numpy as np class MNISTLoader(): def __init__(self): mnist = tf.keras.datasets.mnist (self.train_data, self.train_label), (self.test_data, self.test_label) = mnist.load_data() # MNIST中的图像默认为uint8(0-255的数字)。以下代码将其归一化到0-1之间的浮点数,并在最后增加一维作为颜色通道 self.train_data = np.expand_dims(self.train_data.astype(np.float32) / 255.0, axis=-1) # [60000, 28, 28, 1] self.test_data = np.expand_dims(self.test_data.astype(np.float32) / 255.0, axis=-1) # [10000, 28, 28, 1] self.train_label = self.train_label.astype(np.int32) # [60000] self.test_label = self.test_label.astype(np.int32) # [10000] self.num_train_data, self.num_test_data = self.train_data.shape[0], self.test_data.shape[0] def get_batch(self, batch_size): # 从数据集中随机取出batch_size个元素并返回 index = np.random.randint(0, np.shape(self.train_data)[0], batch_size) return self.train_data[index, :], self.train_label[index] # tf.keras.layers.Dense( # units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', # bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, # activity_regularizer=None, kernel_constraint=None, bias_constraint=None, # **kwargs # ) # units: Positive integer, dimensionality of the output space. # activation: Activation function to use. If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x). class MLP(tf.keras.Model): def __init__(self): super().__init__() self.flatten = tf.keras.layers.Flatten() # Flatten层将除第一维(batch_size)以外的维度展平 self.dense1 = tf.keras.layers.Dense(units=100, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, inputs): # [batch_size, 28, 28, 1] x = self.flatten(inputs) # [batch_size, 784] x = self.dense1(x) # [batch_size, 100] x = self.dense2(x) # [batch_size, 10] output = tf.nn.softmax(x) return output num_epochs = 5 batch_size = 50 learning_rate = 0.001 model = MLP() data_loader = MNISTLoader() optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) num_batches = int(data_loader.num_train_data // batch_size * num_epochs) for batch_index in range(num_batches): X, y = data_loader.get_batch(batch_size) #从数据集中随机选一部分数据 with tf.GradientTape() as tape: y_pred = model(X) #得到预测值 loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)#计算loss loss = tf.reduce_mean(loss) print("batch %d: loss %f" % (batch_index, loss.numpy())) grads = tape.gradient(loss, model.variables) #calc grads optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables)) #update grads #tf.keras.metrics.SparseCategoricalAccuracy是一个评估器 sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() num_batches = int(data_loader.num_test_data // batch_size) for batch_index in range(num_batches): start_index, end_index = batch_index * batch_size, (batch_index + 1) * batch_size #model.predict 输入测试数据,输出预测结果 y_pred = model.predict(data_loader.test_data[start_index: end_index]) sparse_categorical_accuracy.update_state(y_true=data_loader.test_label[start_index: end_index], y_pred=y_pred) print("test accuracy: %f" % sparse_categorical_accuracy.result())
参考链接:https://tf.wiki/zh/basic/models.html(这本书挺好的,实践力很强)