zoukankan      html  css  js  c++  java
  • 最短路径求解(Dijkstra)

    Dijkstra算法分析

    题目分析参照《数据结构》(严蔚敏)7-6节

    最短路径问题描述

    参照日常生活中的公交查询系统。我们有选项:

    少换乘/最少站数

    价格最少/时间最短....

    (ps:下边这个图是网页查询的,略有出入)

    根据这样的分类。我们可以将最短路径分为:结点最少(经过的站数最少),权值最小(这个就是个心里期望了,看你是相花费时间最少,金钱最少....)

    结点最少

    (参照途中描述)

    由此可以看出,对于经过站点最少,换乘最少这种问题,我们只需要对图进行广度遍历,即可获取相关结果。

    我们重点分析下面的情况

    权值最小(花费最少)

    理论:从A到B,他们之间的路径要么是A->B,要么经过中间节点  A->..->B其最短路径也就是两条路径中最短的一条。

    于是有:对于最短路径问题,我们只需要利用动态规划,在遍历中更新,逐步获取最短路径。

    具体分析图如下

    如上为寻找下标0-2结点过程的分析。对应代码

        bool Dijkstra(const V&src,const V&dst,int &ret)
        {
            //如果只有顶点,那么返回true,ret =0;
            if (_size <= 1)
            {
                ret = 0;
                return true;
            }
            int cur = FindIndexV(src);
            int end = FindIndexV(dst);
            
            int beg = cur;
    
            size_t wights[6] = {};
            int paths[6] = {};
            for (size_t i = 0; i < _size; ++i)
            {
                wights[i] = -1;
                paths[i] = src;
            }
            wights[cur] = 0;
            paths[cur] = 0;
    
            Edge* pcur = _eList[cur];
            //首次更新
            while (pcur)
            {
                wights[pcur->_dst] = pcur->_wight;
                pcur = pcur->_next;
            }
            pcur = _eList[cur];
    
            int visitedCount = 0;
            while (cur!=end)//未走到目的
            {
                if (cur == beg)
                    visitedCount++;
                //如果起点没有路径且目标不可达//或者回到起点了
                if (pcur == NULL&&wights[dst] == -1||cur == beg&&visitedCount==2)
                {
                    return false;
                }
    
                //获取最短边
                Edge* minCur = _eList[cur];
                Edge* pcur = _eList[cur];
                while (pcur)    
                {
                    if (minCur->_wight > pcur->_wight)
                        minCur = pcur;
                    pcur = pcur->_next;
                }
                cur = minCur->_src;
                //根据局部最短更新路径
                if (wights[cur] + minCur->_wight < wights[minCur->_dst])
                {
                    wights[minCur->_dst] = wights[cur] + minCur->_wight;
                    paths[minCur->_dst] = minCur->_src;
                }
    
                cur = minCur->_dst;
                if (minCur->_dst == FindIndexV(dst))
                {
                    ret = wights[minCur->_dst];
                    return true;
                }
            }
        }

    以下是整个图项目文件以及对应于最短路径的测试用例

    #pragma once
    //邻接表实现图
    
    #include<queue>
    #include<stack>
    #include"UnionFindset.h"
    
    #include<map>
    template<class V, class E>
    struct Edge
    {
        Edge(size_t dst,size_t src, const E&e)
            :_wight(e)
            ,_dst(dst)
            ,_src(src)
            , _next(NULL)
        {}
        E _wight;       //权值,边比重
        size_t _dst;    //目的顶点下标
        size_t _src;    //源顶点下标
        struct Edge<V, E>* _next;
    
        bool operator<(const Edge* &ed)
        {
            return _wight < ed->_wight;
        }
    };
    
    template<class V,class E>
    class GraphList
    {
        typedef Edge<V, E> Edge;
    protected:
        V* _vArr;               //顶点存储数组 
        size_t _size;
         
        Edge** _eList;    //边存储指针数组
    
    public:
        GraphList(const V* vArray, const size_t size)
            :_size(size)
            , _vArr(new V[size])
        {
            //初始化顶点保存
            for (size_t i = 0; i < size; ++i)
            {
                _vArr[i] = vArray[i];
            }
            //初始化边结构
            _eList = new Edge*[size];
            memset(_eList, 0, sizeof(Edge*)*size);
        }
    
        int FindIndexV(const V& v) const
        {
            for (size_t i = 0; i < _size; ++i)
            {
                if (_vArr[i] == v)
                    return i;
            }
            return -1;
        }
    
        //添加v1->v2的边
        void AddEdge2(const V& v1, const V&v2, const E& e, bool IsDir = true)
        {
            int ind1 = FindIndexV(v1);
            int ind2 = FindIndexV(v2);
    
            Edge* cur = new Edge(ind2, ind1, e);
    
            cur->_next = _eList[ind1];
            _eList[ind1] = cur;
    
            if (!IsDir)
            {
                Edge* cur = new Edge(ind1, ind2, e);
                cur->_next = _eList[ind2];
                _eList[ind2] = cur;
            }
    
        }
    
    
        void Display()const
        {
            cout << "顶点集合" << endl;
            for (size_t i = 0; i < _size; ++i)
            {
                cout << _vArr[i] << " ";
            }
            cout << endl << "边表示" << endl;
    
    
            for (size_t i = 0; i < _size; ++i)
            {
                cout << "边["<<i << "]>>";
                Edge* cur = _eList[i];
                while (cur)
                {
                    //cout << "[" << cur->_dst << "]" << cur->_wight << " ";
                    //printf("[%d]:", cur->_dst, cur->_wight);
                    cout << "[" << cur->_dst << "]" << cur->_wight << "--> ";
                    cur = cur->_next;
                }
                cout <<"NULL"<< endl;
            }
            cout << endl;
        }
    
        //广度优先
        void BSP(const V& root)
        {
            cout << "广度优先遍历:" << endl;
            bool *visited = new bool[_size]();
    
            queue<int> q;
            int index = FindIndexV(root);
    
            q.push(index);
    
            while (!q.empty())
            {
                index = q.front();
                if (visited[index] == false)
                {
                    cout << _vArr[index]<<"-->";
                }
    
                visited[index] = true;
    
                q.pop();
                Edge* cur = _eList[index];
                while (cur)
                {
                    if (visited[cur->_dst] == false)//未访问过那么压入
                    {
                        q.push(cur->_dst);
                    }
                    cur = cur->_next;
                }
            }
            cout << endl << endl;
        }
    
        //深度优先
        void DSP(const V& root)
        {
            //
            cout << "深度优先遍历:" << endl;
            _DSP(root);
            cout << endl << endl;
        }
        void _DSP(const V& root)
        {
            static bool *visited = new bool[_size]();
            int index = FindIndexV(root);
            if (visited[index] == false)
            {
                cout << _vArr[index] << "-->";
                visited[index] = true;
            }
            
            Edge* cur = _eList[index];
    
            while (cur)
            {
                if (visited[cur->_dst] == false)
                    _DSP(_vArr[cur->_dst]);
                cur = cur->_next;
            }
            if (cur == NULL)
                return;
        }
    
        //在所有边中获取最小权值的边
        int FindMinEdgeIndex(vector<Edge*>&v)
        {
            int min = 0;
            for (size_t i = 1; i < v.size(); ++i)
            {
                if (v[i]->_wight < v[min]->_wight)
                    min = i;
            }
            return min;
        }
    
        bool Kruskal(GraphList<V,E>& minTree)
        {
            vector<Edge*> ve;
            for (size_t i = 0; i < _size; ++i)
            {
                Edge* cur = _eList[i];
                while (cur)
                {
                    //只插入有效边
                    ve.push_back(cur);
                    cur = cur->_next;
                }
            }
    
            UnionFindSet us(_size);
    
            while (!ve.empty())
            {
                //找到最小权值边
                int i = FindMinEdgeIndex(ve);
                //并查集插入相关结点
                bool sure = us.Combine(ve[i]->_src, ve[i]->_dst);
                if (sure)   //如果不是连通的,那么加入该边
                {
                    minTree.AddEdge2(_vArr[ve[i]->_src], _vArr[ve[i]->_dst], ve[i]->_wight);
                }
                ve.erase(ve.begin()+i);
            }
    
            return us.IsOnlyOneRoot();
        }
    
    
        //在相关边中获取最小权值的边
        int FindMinEdgeIndexByInGraph(vector<Edge*>&v,vector<int>& nodes)
        {
            if (nodes.size() == 0)
                return FindMinEdgeIndex(v);
            int min = -1;
            for (size_t i = 0; i < v.size(); ++i)   //遍历所有结点
            {
                //如果
          
                if (v[i]->_wight < v[min]->_wight)
                {
                    bool inNodes = false;
                    for (size_t j = 0; j < nodes.size(); ++i)
                    {
                        if (v[i]->_dst == nodes[j] || v[i]->_src == nodes[j])
                        {
                            inNodes = true;
                            break;
                        }
                    } 
                    if(inNodes)
                        min = i;
                }      
    
            }
            return min;
        }
        bool Prim(GraphList<V, E>& minTree)
        {
            vector<Edge*> ve;
            vector<int> inGraph;
            for (size_t i = 0; i < _size; ++i)
            {
                Edge* cur = _eList[i];
                while (cur)
                {
                    //只插入有效边
                    ve.push_back(cur);
                    cur = cur->_next;
                }
            }
    
            UnionFindSet us(_size);
    
            while (!ve.empty())
            {
                //找到最小权值边
                int i = FindMinEdgeIndexByInGraph(ve,inGraph);
                if (us.IsOnlyOneRoot())
                    return true;
    
                else if (i == -1 && !us.IsOnlyOneRoot())
                    return false;
                
                //并查集插入相关结点
                bool sure = us.Combine(ve[i]->_src, ve[i]->_dst);
                if (sure)   //如果不是连通的,那么加入该边
                {
                    minTree.AddEdge2(_vArr[ve[i]->_src], _vArr[ve[i]->_dst], ve[i]->_wight);
                }
                ve.erase(ve.begin() + i);
            }
    
            return us.IsOnlyOneRoot();
        }
        //size_t wights[6] = {};
        //int paths[6] = {};
        bool Dijkstra(const V&src,const V&dst,int &ret)
        {
            //如果只有顶点,那么返回true,ret =0;
            if (_size <= 1)
            {
                ret = 0;
                return true;
            }
            int cur = FindIndexV(src);
            int end = FindIndexV(dst);
            
            int beg = cur;
    
            size_t wights[6] = {};
            int paths[6] = {};
            for (size_t i = 0; i < _size; ++i)
            {
                wights[i] = -1;
                paths[i] = src;
            }
            wights[cur] = 0;
            paths[cur] = 0;
    
            Edge* pcur = _eList[cur];
            //首次更新
            while (pcur)
            {
                wights[pcur->_dst] = pcur->_wight;
                pcur = pcur->_next;
            }
            pcur = _eList[cur];
    
            int visitedCount = 0;
            while (cur!=end)//未走到目的
            {
                if (cur == beg)
                    visitedCount++;
                //如果起点没有路径且目标不可达//或者回到起点了
                if (pcur == NULL&&wights[dst] == -1||cur == beg&&visitedCount==2)
                {
                    return false;
                }
    
                //获取最短边
                Edge* minCur = _eList[cur];
                Edge* pcur = _eList[cur];
                while (pcur)    
                {
                    if (minCur->_wight > pcur->_wight)
                        minCur = pcur;
                    pcur = pcur->_next;
                }
                cur = minCur->_src;
                //根据局部最短更新路径
                if (wights[cur] + minCur->_wight < wights[minCur->_dst])
                {
                    wights[minCur->_dst] = wights[cur] + minCur->_wight;
                    paths[minCur->_dst] = minCur->_src;
                }
    
                cur = minCur->_dst;
                if (minCur->_dst == FindIndexV(dst))
                {
                    ret = wights[minCur->_dst];
                    return true;
                }
            }
        }
    
        ~GraphList()
        {
            if (_vArr)
            {
                delete[]_vArr;
                _vArr = NULL;
            }
            if (_eList)
            {
                for (size_t i = 0; i < _size;++i)
                {
                    while (_eList[i] != NULL)
                    {
                        Edge* del = _eList[i];
                        _eList[i] = del->_next;
                        delete del;
                        del = NULL;
                    }
                }
            }
        }
    };
    
    
    
    void testD()
    {
        //int vArr1[] = { 1,2,3,4,5,6,7,8,9 };
        //GraphList<int, int> gh1(vArr1, sizeof(vArr1) / sizeof(vArr1[0]));
    
        //gh1.AddEdge2(1, 2, 11);
        //gh1.AddEdge2(1, 3, 33);
        //gh1.AddEdge2(1, 5, 33);
        //gh1.AddEdge2(2, 3, 33);
        //gh1.AddEdge2(2, 6, 99);
        //gh1.AddEdge2(5, 3, 33);
        //gh1.AddEdge2(3, 4, 44);
        //gh1.AddEdge2(4, 5, 55);
        //gh1.AddEdge2(4, 7, 32);
        //gh1.AddEdge2(7, 8, 65);
        //gh1.AddEdge2(1, 9, 12);
        //gh1.AddEdge2(9, 7, 22);    
    
        int vArr1[] = { 0,1,2,3,4,5};
        GraphList<int, int> gh1(vArr1, sizeof(vArr1) / sizeof(vArr1[0]));
    
        gh1.AddEdge2(0, 3, 10);
        gh1.AddEdge2(0, 2, 50);
        gh1.AddEdge2(3, 1, 20);
        gh1.AddEdge2(1, 2, 10);
        gh1.AddEdge2(2, 4, 40);
        gh1.AddEdge2(4, 0, 20);
        gh1.AddEdge2(4, 1, 30);
        gh1.AddEdge2(5, 1, 10);
    
    
    
        gh1.Display();
    
        gh1.BSP(1);
        gh1.DSP(1);
        GraphList<int, int> gMin(vArr1, sizeof(vArr1) / sizeof(vArr1[0]));
        GraphList<int, int> gMin1(vArr1, sizeof(vArr1) / sizeof(vArr1[0]));
        if (gh1.Kruskal(gMin))
        {
            cout << "kruskal最小生成树:" << endl;
            gMin.Display();
        }
        if (gh1.Prim(gMin1))
        {
            cout << "prim最小生成树:" << endl;
            gMin1.Display();
        }
    
        int ret = 0;
        if (gh1.Dijkstra(0, 1, ret))
        {
            cout <<"gh1.Dijkstra(0, 1, ret)"<< ret << endl;
        }
        if (gh1.Dijkstra(0, 2, ret))
        {
            cout << "gh1.Dijkstra(0, 2, ret)" << ret << endl;
        }
        if (gh1.Dijkstra(0, 3, ret))
        {
            cout << "gh1.Dijkstra(0, 3, ret)" << ret << endl;
        }
        if (gh1.Dijkstra(0, 4, ret))
        {
            cout << "gh1.Dijkstra(0, 4, ret)" << ret << endl;
        }
        if (gh1.Dijkstra(0, 5, ret))
        {
            cout << "gh1.Dijkstra(0, 5, ret)" << ret << endl;
        }
        //char vArr2[] = { 'A','B','C','D','E','F' };
        //GraphList<char, int> gh(vArr2, sizeof(vArr2) / sizeof(vArr2[0]));
        //gh.AddEdge2('A', 'B', 11);
        //gh.AddEdge2('B', 'C', 33);
        //gh.AddEdge2('C', 'D', 44);
        //gh.AddEdge2('D', 'E', 55);
        //gh.AddEdge2('E','F', 66);
        //gh.Display();
    
     //   gh.BSP('A');
    }
    View Code

    参考:http://www.cnblogs.com/hxsyl/archive/2013/08/20/3270401.html

  • 相关阅读:
    对一些ArcGIS for JS的API的一些理解
    C#中的正则表达式
    IHttpModule接口
    ArcGIS Engine 获取图层中的选择要素的函数封装
    Master Nginx(5)
    python and or的理解规则
    python中try except处理程序异常的三种常用方法
    Python操作excel的几种方式--xlrd、xlwt、openpyxl
    raw_input 和input 区别
    json -- dump load dumps loads 简单对比
  • 原文地址:https://www.cnblogs.com/lang5230/p/5510908.html
Copyright © 2011-2022 走看看