问题:
解决:
首先分为两个过程,Map过程将<=10的牌去掉,然后只针对于>10的牌进行分类,Reduce过程,将Map传过来的键值对进行统计,然后计算出少于3张牌的的花色
1.代码
1) Map代码
1 String line = value.toString(); 2 String[] strs = line.split("-"); 3 if(strs.length == 2){ 4 int number = Integer.valueOf(strs[1]); 5 if(number > 10){ 6 context.write(new Text(strs[0]), value); 7 } 8 }
2) Reduce代码
1 Iterator<Text> iter = values.iterator(); 2 int count = 0; 3 while(iter.hasNext()){ 4 iter.next(); 5 count ++; 6 } 7 if(count < 3){ 8 context.write(key, NullWritable.get()); 9 }
3) Runner代码
1 Configuration conf = new Configuration(); 2 Job job = Job.getInstance(conf); 3 job.setJobName("poker mr"); 4 job.setJarByClass(pokerRunner.class); 5 6 job.setMapperClass(pakerMapper.class); 7 job.setReducerClass(pakerRedue.class); 8 9 job.setMapOutputKeyClass(Text.class); 10 job.setMapOutputValueClass(Text.class); 11 12 job.setOutputKeyClass(Text.class); 13 job.setOutputValueClass(NullWriter.class); 14 15 FileInputFormat.addInputPath(job, new Path(args[0])); 16 FileOutputFormat.setOutputPath(job, new Path(args[1])); 17 18 job.waitForCompletion(true);
2.运行结果
File System Counters
FILE: Number of bytes read=87
FILE: Number of bytes written=211167
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=366
HDFS: Number of bytes written=6
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=109577
Total time spent by all reduces in occupied slots (ms)=42668
Total time spent by all map tasks (ms)=109577
Total time spent by all reduce tasks (ms)=42668
Total vcore-seconds taken by all map tasks=109577
Total vcore-seconds taken by all reduce tasks=42668
Total megabyte-seconds taken by all map tasks=112206848
Total megabyte-seconds taken by all reduce tasks=43692032
Map-Reduce Framework
Map input records=49
Map output records=9
Map output bytes=63
Map output materialized bytes=87
Input split bytes=110
Combine input records=0
Combine output records=0
Reduce input groups=4
Reduce shuffle bytes=87
Reduce input records=9
Reduce output records=3
Spilled Records=18
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=992
CPU time spent (ms)=3150
Physical memory (bytes) snapshot=210063360
Virtual memory (bytes) snapshot=652480512
Total committed heap usage (bytes)=129871872
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=256
File Output Format Counters
Bytes Written=6
3.运行方法
在Eclipse里编译好,生出jar包,然后上传到linux系统上,在集群上运行该文件
运行命令:bin/hadoop **.jar 类包名 /
例如:bin/hadoop **.jar com.test.mr /