zoukankan      html  css  js  c++  java
  • NYOJ--517--最小公倍数(大数打表)

    最小公倍数

    时间限制:1000 ms  |  内存限制:65535 KB
    难度:3
     
    描述
    为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致。
    但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多。
    事实上,它是1至6的每个数字的倍数。即1,2,3,4,5,6都是可以除尽60。
     
    我们希望寻找到能除尽1至n的的每个数字的最小整数m.
     
    输入
    多组测试数据(少于500组)。
    每行只有一个数n(1<=n<=100).
    输出
    输出相应的m。
    样例输入
    2
    3
    4
    
    样例输出
    2
    6
    12
      1 //打表
      2 import java.math.BigDecimal;
      3 import java.math.BigInteger;
      4 import java.util.Scanner;
      5 public class Main{
      6     
      7     public static void main(String args[]){
      8         Scanner cin = new Scanner(System.in);
      9         /*final int MAX = 105;
     10         int arr[] = new int[MAX];
     11         BigInteger res[] = new BigInteger[MAX];
     12         for(int i=1; i<MAX; ++i)arr[i] = i;
     13         for(int i=2; i<MAX; ++i){
     14             for(int j=i+1; j<MAX; ++j){
     15                 if(j%i == 0)
     16                     arr[j] /= arr[i];
     17             }
     18         }
     19         for(int i=1; i<MAX; ++i)res[i] = BigInteger.ONE;
     20         for(int i=2; i<MAX; ++i){
     21             for(int j=2; j<i; ++j){
     22                 res[i] = res[i].multiply(BigInteger.valueOf(arr[j]));
     23             }
     24         }
     25         for(int i=1; i<101; ++i){
     26             int n = i;
     27             System.out.println("""+res[n+1] + "",");
     28         }*/
     29         String s[] = {
     30                 "1",
     31                 "2",
     32                 "6",
     33                 "12",
     34                 "60",
     35                 "60",
     36                 "420",
     37                 "840",
     38                 "2520",
     39                 "2520",
     40                 "27720",
     41                 "27720",
     42                 "360360",
     43                 "360360",
     44                 "360360",
     45                 "720720",
     46                 "12252240",
     47                 "12252240",
     48                 "232792560",
     49                 "232792560",
     50                 "232792560",
     51                 "232792560",
     52                 "5354228880",
     53                 "5354228880",
     54                 "26771144400",
     55                 "26771144400",
     56                 "80313433200",
     57                 "80313433200",
     58                 "2329089562800",
     59                 "2329089562800",
     60                 "72201776446800",
     61                 "144403552893600",
     62                 "144403552893600",
     63                 "144403552893600",
     64                 "144403552893600",
     65                 "144403552893600",
     66                 "5342931457063200",
     67                 "5342931457063200",
     68                 "5342931457063200",
     69                 "5342931457063200",
     70                 "219060189739591200",
     71                 "219060189739591200",
     72                 "9419588158802421600",
     73                 "9419588158802421600",
     74                 "9419588158802421600",
     75                 "9419588158802421600",
     76                 "442720643463713815200",
     77                 "442720643463713815200",
     78                 "3099044504245996706400",
     79                 "3099044504245996706400",
     80                 "3099044504245996706400",
     81                 "3099044504245996706400",
     82                 "164249358725037825439200",
     83                 "164249358725037825439200",
     84                 "164249358725037825439200",
     85                 "164249358725037825439200",
     86                 "164249358725037825439200",
     87                 "164249358725037825439200",
     88                 "9690712164777231700912800",
     89                 "9690712164777231700912800",
     90                 "591133442051411133755680800",
     91                 "591133442051411133755680800",
     92                 "591133442051411133755680800",
     93                 "1182266884102822267511361600",
     94                 "1182266884102822267511361600",
     95                 "1182266884102822267511361600",
     96                 "79211881234889091923261227200",
     97                 "79211881234889091923261227200",
     98                 "79211881234889091923261227200",
     99                 "79211881234889091923261227200",
    100                 "5624043567677125526551547131200",
    101                 "5624043567677125526551547131200",
    102                 "410555180440430163438262940577600",
    103                 "410555180440430163438262940577600",
    104                 "410555180440430163438262940577600",
    105                 "410555180440430163438262940577600",
    106                 "410555180440430163438262940577600",
    107                 "410555180440430163438262940577600",
    108                 "32433859254793982911622772305630400",
    109                 "32433859254793982911622772305630400",
    110                 "97301577764381948734868316916891200",
    111                 "97301577764381948734868316916891200",
    112                 "8076030954443701744994070304101969600",
    113                 "8076030954443701744994070304101969600",
    114                 "8076030954443701744994070304101969600",
    115                 "8076030954443701744994070304101969600",
    116                 "8076030954443701744994070304101969600",
    117                 "8076030954443701744994070304101969600",
    118                 "718766754945489455304472257065075294400",
    119                 "718766754945489455304472257065075294400",
    120                 "718766754945489455304472257065075294400",
    121                 "718766754945489455304472257065075294400",
    122                 "718766754945489455304472257065075294400",
    123                 "718766754945489455304472257065075294400",
    124                 "718766754945489455304472257065075294400",
    125                 "718766754945489455304472257065075294400",
    126                 "69720375229712477164533808935312303556800",
    127                 "69720375229712477164533808935312303556800",
    128                 "69720375229712477164533808935312303556800",
    129                 "69720375229712477164533808935312303556800",
    130         };
    131         while(cin.hasNext()){
    132             int n = cin.nextInt();
    133             System.out.println(s[n-1]);
    134         }
    135     }
    136 }
  • 相关阅读:
    leetcode_268.missing number
    leetcode_41. First Missing Positive_cyclic swapping
    cyclic swapping algorithm
    leetcode_919. Complete Binary Tree Inserter_完全二叉树插入
    前端的图片隐写术
    C#读取串口数据实现无线手柄操作ROV
    通过android传感器控制ROV云台转动
    C#实现的简易多人聊天室
    ARM Cortex M3指令集
    ODbgscript 1.82.x Document
  • 原文地址:https://www.cnblogs.com/langyao/p/6775167.html
Copyright © 2011-2022 走看看