zoukankan      html  css  js  c++  java
  • 基于docker部署prometheus监控平台

    一、prometheus介绍

    Prometheus是一套开源的系统监控报警框架。Prometheus作为新一代的云原生监控系统,相比传统监控监控系统(Nagios或者Zabbix)拥有如下优点。

    易管理性
    Prometheus: Prometheus核心部分只有一个单独的二进制文件,可直接在本地工作,不依赖于分布式存储。
    Nagios: 需要有专业的人员进行安装,配置和管理,并且过程很复杂。

    业务数据相关性
    Prometheus:监控服务的运行状态,基于Prometheus丰富的Client库,用户可以轻松的在应用程序中添加对Prometheus的支持,从而让用户可以获取服务和应用内部真正的运行状态。
    Nagios:大部分的监控能力都是围绕系统的一些边缘性的问题,主要针对系统服务和资源的状态以及应用程序的可用性。
    另外Prometheus还存在以下优点:

    高效:单一Prometheus可以处理数以百万的监控指标;每秒处理数十万的数据点。

    易于伸缩:通过使用功能分区(sharing)+联邦集群(federation)可以对Prometheus进行扩展,形成一个逻辑集群;Prometheus提供多种语言的客户端SDK,这些SDK可以快速让应用程序纳入到Prometheus的监控当中。

    良好的可视化:Prometheus除了自带有Prometheus UI,Prometheus还提供了一个独立的基于Ruby On Rails的Dashboard解决方案Promdash。另外最新的Grafana可视化工具也提供了完整的Proetheus支持,基于Prometheus提供的API还可以实现自己的监控可视化UI。

    二、prometheus框架

    参考官网:

    Prometheus Server:Prometheus Sever是Prometheus组件中的核心部分,负责实现对监控数据的获取,存储及查询。Prometheus Server可以通过静态配置管理监控目标,也可以配合使用Service Discovery的方式动态管理监控目标,并从这些监控目标中获取数据。其次Prometheus Sever需要对采集到的数据进行存储,Prometheus Server本身就是一个实时数据库,将采集到的监控数据按照时间序列的方式存储在本地磁盘当中。Prometheus Server对外提供了自定义的PromQL,实现对数据的查询以及分析。另外Prometheus Server的联邦集群能力可以使其从其他的Prometheus Server实例中获取数据。

    Exporters:Exporter将监控数据采集的端点通过HTTP服务的形式暴露给Prometheus Server,Prometheus Server通过访问该Exporter提供的Endpoint端点,即可以获取到需要采集的监控数据。可以将Exporter分为2类:
    直接采集:这一类Exporter直接内置了对Prometheus监控的支持,比如cAdvisor,Kubernetes,Etcd,Gokit等,都直接内置了用于向Prometheus暴露监控数据的端点。
    间接采集:原有监控目标并不直接支持Prometheus,因此需要通过Prometheus提供的Client Library编写该监控目标的监控采集程序。例如:Mysql Exporter,JMX Exporter,Consul Exporter等。

    AlertManager:在Prometheus Server中支持基于Prom QL创建告警规则,如果满足Prom QL定义的规则,则会产生一条告警。在AlertManager从 Prometheus server 端接收到 alerts后,会进行去除重复数据,分组,并路由到对收的接受方式,发出报警。常见的接收方式有:电子邮件,pagerduty,webhook 等。

    PushGateway:Prometheus数据采集基于Prometheus Server从Exporter pull数据,因此当网络环境不允许Prometheus Server和Exporter进行通信时,可以使用PushGateway来进行中转。通过PushGateway将内部网络的监控数据主动Push到Gateway中,Prometheus Server采用针对Exporter同样的方式,将监控数据从PushGateway pull到Prometheus Server。

    三、Prometheus的工作流:

    1.Prometheus server定期从配置好的jobs或者exporters中拉取metrics,或者接收来自Pushgateway发送过来的metrics,或者从其它的Prometheus server中拉metrics。
    2.Prometheus server在本地存储收集到的metrics,并运行定义好的alerts.rules,记录新的时间序列或者向Alert manager推送警报。
    3.Alertmanager根据配置文件,对接收到的警报进行处理,发出告警
    4.在图形界面中,可视化采集数据

    四、基础环境

      主机名 IP 描述
    监控主机  pro01 192.168.253.42 docker, prometheus, grafana, exporter,alertmanager
    被监控主机 exp02 192.168.253.57 192.168.253.42 exporter

    五、prometheus安装 

    docker的安装这里就不说了。

    docker pull prom/prometheus

    5.1 创建prometheus工作目录

    mkdir -p /data/prometheus
    mkdir /data/prometheus/data
    chown 777 /data/prometheus/data
    mkdir /data/prometheus/rules

     编写prometheus.yml文件

    chown 777 /data/prometheus/prometheus.yml
    vim /data/prometheus/prometheus.yml
    
    # my global config
    global:
      scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
      evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
      # scrape_timeout is set to the global default (10s).
    
    # Alertmanager configuration
    alerting:
      alertmanagers:
      - static_configs:
        - targets: ['193.168.253.42:9093']
          # - alertmanager:9093
    
    # Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
    rule_files:
      - "node_down.yml"
      # - "first_rules.yml"
      # - "second_rules.yml"
    
    # A scrape configuration containing exactly one endpoint to scrape:
    # Here it's Prometheus itself.
    scrape_configs:
      # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
      - job_name: 'prometheus'
        static_configs:
        - targets: ['localhost:9090']- job_name: 'node'
        scrape_interval: 8s
        static_configs:
          - targets: ['193.168.253.42:9100']

    以上yml文件,配置了alertmanager,用于告警,匹配规则为node_down,节点如果down掉就会触发警告,job_name 有三个,监控本机9090,8080,9100端口,分别为三种不同的组件

    启动prometheus

    docker run  -d -p 9090:9090 -v /data/prometheus/data:/prometheus 
    -v /data/prometheus:/etc/prometheus 
    --name pro prom/prometheus

     浏览器访问

    六、安装grafana

    拉取镜像

    docker pull grafana/grafana

    启动grafana

    docker run -p -d  3000:3000 --name grafana grafana/grafana

    查看容器

     浏览器访问

    浏览器访问http://192.168.253.42:3000(IP:3000端口),即可打开grafana页面,默认用户名密码都是admin,初次登录会要求修改默认的登录密码

     添加prometheus数据源

    (1)点击主界面"Add your first data source"

    (2)选择Prometheus

     

    (3)填写数据源设置项

    URL处填写Prometheus服务所在的IP地址,此处我们将Prometheus服务与Grafana安装在同一台机器上,直接填写localhost或者ip就行

      点击下方 【Save & Test】按钮,保存设置

    (4)Dashboards页面选择“Prometheus 2.0 Stats”

    点击Dashboards选项卡,选择Prometheus 2.0 Stats

    (5)查看监控

    点击Grafana图标,切换到Grafana主页面,然后点击Home,选择我们刚才添加的Prometheus 2.0 Stats,即可看到监控数据

     

     

     七、安装node-exporter

    以下操作皆在被监控主机(pro01,exp02)上操作。

    下载node-exporter地址:https://github.com/prometheus/node_exporter/releases

    解压node-exporter

    tar xzf node_exporter-0.18.1.linux-amd64.tar.g 
    mv node_exporter-0.18.1.linux-amd64 /data/node_exporter

    启动

    cd /data/node_exporter
    ./node_exporter

     浏览器访问

    设置node_exporter 以服务的方式启动并设置开机自启

    添加系统服务

     vim /etc/systemd/system/node_exporter.service
    [Unit]
    Description=node_exporter
    After=network.target 
    
    [Service]
    ExecStart=/data/node_exporter/node_exporter
    Restart=on-failure
    
    [Install]
    WantedBy=multi-user.target

    启动服务,设置开机自启,并检查服务开启状态

    #  systemctl daemon-reload
    #  systemctl enable node_exporter
    #  systemctl start node_exporter
    #  systemctl status node_exporter

     浏览器访问:

     八、安装alertmanager

    拉取镜像:

    docker pull prom/alertmanager

    创建工作目录

    mkdir -p /data/alertmanager/storage
    mkdir  /data/alertmanager/template
    chown 777 /data/alertmanager/storage

     修改配置

    vim /data/alertmanager/alertmanager.yml

    global:
      smtp_smarthost: 'smtp.qq.com:465'       #smtp地址
      smtp_from: '258xxx9221@qq.com'          #谁发邮件
      smtp_auth_username: '258xxx9221@qq.com' #邮箱用户
      smtp_auth_password: 'xxxxxxx'           #邮箱smtp授权码
      smtp_require_tls: false
    
    templates:  #定义模板
      - 'template/*.tmp1'
    route:
      group_by: ['alertname'] #分组名
      group_wait: 30s         #当收到警报,等待30秒看是否还有警报,如果有就一起发出去
      group_interval: 5m      # 发送警告间隔时间
      repeat_interval: 3h     # 重复报警的间隔时间
      receiver: mail          # 全局报警组,这个参数是必选的,和下面报警组名要相同
    
    receivers:
    - name: 'mail'            # 报警组名
      email_configs:
      - to: '{{ template "email.to" . }}' #发送给谁
        html: '{{ template "email.to.html" . }}'
        send_resolved: true
    
    #告警抑制
    inhibit_rules:
      - source_match:
          severity: 'critical'
        target_match:
          severity: 'warning'
        equal: ['alertname', 'dev', 'instance']

    简单介绍一下主要配置的作用:

    global: 全局配置,包括报警解决后的超时时间、SMTP 相关配置、各种渠道通知的 API 地址等等。
    route: 用来设置报警的分发策略,它是一个树状结构,按照深度优先从左向右的顺序进行匹配。
    receivers: 配置告警消息接受者信息,例如常用的 email、wechat、slack、webhook 等消息通知方式。
    inhibit_rules: 抑制规则配置,当存在与另一组匹配的警报(源)时,抑制规则将禁用与一组匹配的警报(目标)。

    新建模板:

    vim /data/alertmanager/template/email.tmpl
    {{ define "email.from" }}11111111@qq.com{{ end }}
    {{ define "email.to" }}22222222@qq.com{{ end }}
    {{ define "email.to.html" }}
    {{ range .Alerts }}
    =========start==========<br>
    告警程序: prometheus_alert <br>
    告警级别: {{ .Labels.severity }} 级 <br>
    告警类型: {{ .Labels.alertname }} <br>
    故障主机: {{ .Labels.instance }} <br>
    告警主题: {{ .Annotations.summary }} <br>
    告警详情: {{ .Annotations.description }} <br>
    触发时间: {{ .StartsAt.Format "2019-08-04 16:58:15" }} <br>
    =========end==========<br>
    {{ end }}
    {{ end }}

    说明:

    define 用来定义变量,配置3个变量,分别是:email.from、email.to、email.to.html ,可以在 alertmanager.yml 文件中直接配置引用。

    这里 email.to.html 就是要发送的邮件内容,支持 Html 和 Text 格式。为了显示好看,采用 Html 格式简单显示信息。 

    {{ range .Alerts }} 是个循环语法,用于循环获取匹配的 Alerts 的信息,下边的告警信息跟上边默认邮件显示信息一样,只是提取了部分核心值来展示。

    启动服务

    docker run -d 
      -p 9093:9093 
      --name alertmanager 
      --restart=always 
      -v /data/alertmanager:/etc/alertmanager 
      -v /data/alertmanager/storage:/alertmanager 
      prom/alertmanager

    浏览器访问:

    http://192.168.253.42:9093

    九、prometheus监控报警

    根据prometheus.yml文件,编写匹配规则

    cd /data/prometheus/rules

    vim node_down.yml
    groups:
    - name: node-up
      rules:
      - alert: node-up
        expr: up{job="node-exporter"} == 0
        for: 15s
        labels:
          severity: 1
          team: node
        annotations:
          summary: "{{ $labels.instance }} 已停止运行!"
          description: "{{ $labels.instance }} 检测到异常停止!请重点关注!!!"

    vim memory_over.yml

    expr 是计算公式,(1 - (node_memory_MemAvailable_bytes / (node_memory_MemTotal_bytes))) * 100 表示获取内存使用率

    groups:
    - name: example
      rules:
      - alert: NodeMemoryUsage
        expr: (1 - (node_memory_MemAvailable_bytes / (node_memory_MemTotal_bytes))) * 100 > 80
        for: 1m
        labels:
          severity: warning
        annotations:
          summary: "{{$labels.instance}}: High Memory usage detected"
          description: "{{$labels.instance}}: Memory usage is above 80% (current value is:{{ $value }})"

    重启peometheus

    docker restart pro

    访问告警页面

    http://192.168.253.42:9090/alerts

    测试报警

    这里直接修改 /data/prometheus/rules/memory_over.yml文件,告警阈值改为10

    expr: (1 - (node_memory_MemAvailable_bytes / (node_memory_MemTotal_bytes))) * 100 > 10

    重启prometheus

    docker restart pro

    等待一分钟,出pending

     再等待一分钟,会出现Firing

    查看邮件

     如果有没收到邮件,查看日志

    docker logs -f alertmanager
  • 相关阅读:
    HDU 2095 find your present (2) (异或)
    UESTC 486 Good Morning (水题+坑!)
    UVa 111 History Grading (简单DP,LIS或LCS)
    UVa 11292 Dragon of Loowater (水题,排序)
    HDU 1503 Advanced Fruits (LCS+DP+递归)
    UVa 10881 Piotr's Ants (等价变换)
    UVa 11178 Morley's Theorem (几何问题)
    HDU 1285 确定比赛名次(拓扑排序)
    .net Core的例子
    TCP与UDP的区别
  • 原文地址:https://www.cnblogs.com/lanist/p/13331391.html
Copyright © 2011-2022 走看看