zoukankan      html  css  js  c++  java
  • 浅谈模式识别中的特征提取

         这两天一直在看深度学习的东西,看的头晕脑胀,不过晕乎归晕乎,感觉对模式识别中的特征提取有了更深一点的小理解,暂时记载下来。

      突然觉得,模式识别的所有问题都绕不过两个关键门槛,第一是分类器,第二便是特征提取。而且几乎所有模式识别方面的研究都是在优化这两个问题,要么是造一个更牛的分类器,要么是找出一些表现力更高的特征形式。

      然而这个问题再最近几年变得不那么明朗了,分类器的研究不用多说,从刚开始的K近邻分类器,贝叶斯分类器,到曾经风靡一时的SVM,再到目前处在浪潮之巅的DeepLearning(谷歌大脑主要就是用的这个,与其说是分类器,这应该更倾向于特征提取),分类器越来越复杂,性能越来越高。特征提取呢,大致也是如此。但存在这样一个问题,就是对经典的模式分类问题,比如指纹识别,文字识别等等,有规矩可循,特征提取自然举足轻重(角点,拐点之类的);但对于那些更抽象、更智能、更拟人的模式分类问题,比如美丽度识别、警觉度识别、表情识别等等,我们用什么特征来描述它们呢?特征提取充当什么样的角色?

      其实对于没搞过模式识别或者是模式识别的初学者来说,这的确值得思考。做惯了传统的识别,再去研究美丽度、表情、警觉度这些抽象的东西,确实有点不适应。究其原因,就是找不到实实在在的东西去描述美丽度、表情、警觉度这些抽象的概念,提不到特征,分类识别自然也就无从谈起。

      难道抽象形式的分类问题无从解决了吗?这个命题显然是错的,但提不到特征怎么解决呢?这就是问题的关键,不是提不到特征,只是提取不到客观的、可见的、可衡量的特征。按照稀疏表示人脸识别的先驱Ma Yi的观点:“图像本身是图像内容信息表示最冗余、也是最全面的存在”,也就是说,图像本身就是特征的存在。换句话说,感觉实在提取不到特征了,那就千拳归一路,把图像本身直接送给分类器去吧。

      用分类器直接处理图像本身,看似鲁莽,其实蕴藏着真正至简的大道理。每种特征都有自身的局限性,都是有意突出图像某些方面的特征,简化甚至忽略别的方面的特征,导致的最终结果就是信息的丢失。Gabor特征搞人脸识别效果好,但它直接忽略了整体的亮度特征,那白人和黑人怎么办?所以只要能提去出具体的、客观实在的特征,就不可避免的存在着信息的丢失,那些丢失的次要信息,对于某些问题的影响可以忽略(如指纹识别、文字识别),但对有些主观问题的影响却是不可估量的。总之,这种机械的选择特征来替代原图像,是机器的思维方式,不是人的思维方式。

      当今对于那些无法用具体特征描述的分类问题,存在两种主流的处理方式,要么干脆直接把图像送给分类器去,这是稀疏表示问题(Ma Yi在文章《Robust Face Recognition via Sparse Representation》中证实稀疏表示分类器的人脸识别性能对特征选择的依赖程度很小);要么然机器自己去学习该用那些特征,机器根据样本自己决定特征的取舍,这更是一种类人的智能化的做法,这也就衍生出了当今如火如荼的东西:深度学习(Deep Learning),名噪一时的谷歌大脑就是这样弄出来的。换句话说,如果不能判断解决一个识别问题应该用哪些特征,那就让机器自己去找好了。就好像支持向量机一样,既然人工找不到最优的分类超平面,就让机器自己去映射,自己去找。恰巧的是,人的大脑也是这么干的。

      总之,在当今这个面向数据的年代,特征选择这个任务越来越不适合人工来做了,典型费力不讨好的工作,让机器自己去找,更符合人的思维。但特征提取是不存在了吗?不是的,因为Deep Learning就是在提特征,只不过让机器自己来做。

    源地址:http://blog.csdn.net/u013088062/article/details/45952613

  • 相关阅读:
    ubuntu 制做samba
    《Programming WPF》翻译 第4章 前言
    《Programming WPF》翻译 第4章 3.绑定到数据列表
    《Programming WPF》翻译 第4章 4.数据源
    《Programming WPF》翻译 第5章 6.触发器
    《Programming WPF》翻译 第4章 2.数据绑定
    《Programming WPF》翻译 第4章 1.不使用数据绑定
    《Programming WPF》翻译 第5章 7.控件模板
    《Programming WPF》翻译 第5章 8.我们进行到哪里了?
    《Programming WPF》翻译 第5章 5.数据模板和样式
  • 原文地址:https://www.cnblogs.com/lanye/p/5130194.html
Copyright © 2011-2022 走看看