zoukankan      html  css  js  c++  java
  • pandas 笔记

    写在前面:

    1. dataframe 和 series 是 pandas 的数据类型
    2. list 和 dict 是 python 的数据类型
    3. ndarray 是 numpy的数据类型
    4. NumPy arrays have one dtype for the entire array, while pandas DataFrames have one dtype per column.

    创建对象

    Creating a Series by passing a list of values, letting pandas create a default integer index:

    In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])
    
    In [4]: s
    Out[4]: 
    0    1.0
    1    3.0
    2    5.0
    3    NaN
    4    6.0
    5    8.0
    dtype: float64
    

    Creating a DataFrame by passing a dict of objects that can be converted to series-like.

    In [9]: df2 = pd.DataFrame({'A': 1.,
       ...:                     'B': pd.Timestamp('20130102'),
       ...:                     'C': pd.Series(1, index=list(range(4)), dtype='float32'),
       ...:                     'D': np.array([3] * 4, dtype='int32'),
       ...:                     'E': pd.Categorical(["test", "train", "test", "train"]),
       ...:                     'F': 'foo'})
       ...: 
    
    In [10]: df2
    Out[10]: 
         A          B    C  D      E    F
    0  1.0 2013-01-02  1.0  3   test  foo
    1  1.0 2013-01-02  1.0  3  train  foo
    2  1.0 2013-01-02  1.0  3   test  foo
    3  1.0 2013-01-02  1.0  3  train  foo
    

    The columns of the resulting DataFrame have different dtypes.

    In [11]: df2.dtypes
    Out[11]: 
    A           float64
    B    datetime64[ns]
    C           float32
    D             int32
    E          category
    F            object
    dtype: object
    

    Viewing data

    Display the index, columns:

    In [15]: df.index
    Out[15]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [16]: df.columns
    Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')
    

    Transposing your data:

    In [20]: df.T
    Out[20]: 
       2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
    B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
    C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
    D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988
    

    Sorting by an axis:

    In [21]: df.sort_index(axis=1, ascending=False)
    Out[21]: 
                       D         C         B         A
    2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
    2013-01-02 -1.044236  0.119209 -0.173215  1.212112
    2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
    2013-01-04  0.271860 -1.039575 -0.706771  0.721555
    2013-01-05 -1.087401  0.276232  0.567020 -0.424972
    2013-01-06  0.524988 -1.478427  0.113648 -0.673690
    

    Sorting by values:

    In [22]: df.sort_values(by='B')
    Out[22]: 
                       A         B         C         D
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    
  • 相关阅读:
    Java配置jdk图文教程
    线程池介绍与应用
    继承机制的探讨
    1.深入分析_NIO性能分析
    1.类的加载机制_继承类的加载(一个小的Demo)说明
    githup创建新java项目
    UE常用快捷键使用
    堡垒机上传文件
    16.linux常用查看命令
    15.vi/vim编辑器下常用光标移动
  • 原文地址:https://www.cnblogs.com/larkiisready/p/11681634.html
Copyright © 2011-2022 走看看