zoukankan      html  css  js  c++  java
  • Segmentation

    SACSegmentation

    采用采样一致性方法对点云进行分割

     1 #include <iostream>
     2 #include <pcl/ModelCoefficients.h>
     3 #include <pcl/io/pcd_io.h>
     4 #include <pcl/point_types.h>
     5 #include <pcl/sample_consensus/method_types.h>
     6 #include <pcl/sample_consensus/model_types.h>
     7 #include <pcl/segmentation/sac_segmentation.h>
     8 
     9 int
    10 main(int argc, char** argv)
    11 {
    12     pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    13     pcl::io::loadPCDFile("D:\in.pcd", *cloud);
    14 
    15     pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
    16     pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    17     // Create the segmentation object
    18     pcl::SACSegmentation<pcl::PointXYZ> seg;
    19     // Optional
    20     seg.setOptimizeCoefficients(true);
    21     // Mandatory
    22     seg.setModelType(pcl::SACMODEL_PLANE);
    23     seg.setMethodType(pcl::SAC_RANSAC);
    24     seg.setDistanceThreshold(0.01);
    25 
    26     seg.setInputCloud(cloud);
    27     seg.segment(*inliers, *coefficients);
    28 
    29     if (inliers->indices.size() == 0)
    30     {
    31         PCL_ERROR("Could not estimate a planar model for the given dataset.");
    32         return (-1);
    33     }
    34 
    35     std::cerr << "Model coefficients: " << coefficients->values[0] << " "
    36         << coefficients->values[1] << " "
    37         << coefficients->values[2] << " "
    38         << coefficients->values[3] << std::endl;
    39 
    40     int num = inliers->indices.size();
    41     pcl::PointCloud<pcl::PointXYZ>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZ>);
    42     cloudOut->width = num;
    43     cloudOut->height = 1;
    44     cloudOut->points.resize(cloudOut->width*cloudOut->height);
    45     for (int i=0;i<num;++i)
    46     {
    47         cloudOut->points[i] = cloud->points[inliers->indices[i]];
    48     }
    49     pcl::io::savePCDFileASCII("D:\out.pcd", *cloudOut);
    50     return (0);
    51 }
    View Code

     EuclideanClusterExtraction

     RegionGrowing

    The purpose of the algorithm is to merge the points that are close enough in terms of the smoothness constraint. Thereby, the output of this algorithm is the set of clusters, were each cluster is a set of points that are considered to be a part of the same smooth surface. The work of this algorithm is based on the comparison of the angles between the points normals.

    First of all it sorts the points by their curvature value. It needs to be done because the region begins its growth from the point that has the minimum curvature value. The reason for this is that the point with the minimum curvature is located in the flat area (growth from the flattest area allows to reduce the total number of segments).

    So we have the sorted cloud. Until there are unlabeled points in the cloud, algorithm picks up the point with minimum curvature value and starts the growth of the region. This process occurs as follows:

    • The picked point is added to the set called seeds.

    • For every seed point algorithm finds neighbouring points.

      • Every neighbour is tested for the angle between its normal and normal of the current seed point. If the angle is less than threshold value then current point is added to the current region.

      • After that every neighbour is tested for the curvature value. If the curvature is less than threshold value then this point is added to the seeds.

      • Current seed is removed from the seeds.

    If the seeds set becomes empty this means that the algorithm has grown the region and the process is repeated from the beginning. You can find the pseudocode for the said algorithm below.

    #include <iostream>
    #include <vector>
    #include <pcl/point_types.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/search/search.h>
    #include <pcl/search/kdtree.h>
    #include <pcl/features/normal_3d.h>
    #include <pcl/visualization/cloud_viewer.h>
    #include <pcl/filters/passthrough.h>
    #include <pcl/segmentation/region_growing.h>
    #include <thread>
    using namespace std::chrono_literals;
    
    int
    main(int argc, char** argv)
    {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
        if (pcl::io::loadPCDFile <pcl::PointXYZ>("D:\pcd\region_growing_tutorial.pcd", *cloud) == -1)
        {
            std::cout << "Cloud reading failed." << std::endl;
            return (-1);
        }
    
        pcl::search::Search<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
        pcl::PointCloud <pcl::Normal>::Ptr normals(new pcl::PointCloud <pcl::Normal>);
        pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
        normal_estimator.setSearchMethod(tree);
        normal_estimator.setInputCloud(cloud);
        normal_estimator.setKSearch(50);
        normal_estimator.compute(*normals);
    
        pcl::IndicesPtr indices(new std::vector <int>);
        pcl::PassThrough<pcl::PointXYZ> pass;
        pass.setInputCloud(cloud);
        pass.setFilterFieldName("z");
        pass.setFilterLimits(0.0, 1.0);
        pass.filter(*indices);
    
        pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;
        reg.setMinClusterSize(50);
        reg.setMaxClusterSize(1000000);
        reg.setSearchMethod(tree);
        reg.setNumberOfNeighbours(30);
        reg.setInputCloud(cloud);
        //reg.setIndices (indices);
        reg.setInputNormals(normals);
        reg.setSmoothnessThreshold(3.0 / 180.0 * M_PI);
        reg.setCurvatureThreshold(1.0);
    
        std::vector <pcl::PointIndices> clusters;
        reg.extract(clusters);
    
        std::cout << "Number of clusters is equal to " << clusters.size() << std::endl;
    
        pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = reg.getColoredCloud();
        pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));
        //viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2);
        viewer->setBackgroundColor(1, 1, 1);
        viewer->addCoordinateSystem(1.0, "global");
        viewer->addPointCloud(colored_cloud);
        while (!viewer->wasStopped())
        {
            viewer->spinOnce(100);
            std::this_thread::sleep_for(100ms);
        }
    
        return (0);
    }
    View Code

     ConditionalEuclideanClustering

    A segmentation algorithm that clusters points based on Euclidean distance and a user-customizable condition that needs to be hold.

    ModelOutlierRemoval

    根据指定的模型及其参数,从点云中抽取符合该模型的点云

    // modelparameter for this sphere:
        // position.x: 0, position.y: 0, position.z:0, radius: 1
        pcl::ModelCoefficients sphere_coeff;
        sphere_coeff.values.resize(4);
        sphere_coeff.values[0] = 0;
        sphere_coeff.values[1] = 0;
        sphere_coeff.values[2] = 0;
        sphere_coeff.values[3] = 1;
    
        pcl::ModelOutlierRemoval<pcl::PointXYZ> sphere_filter;
        sphere_filter.setModelCoefficients(sphere_coeff);
        sphere_filter.setThreshold(0.05);
        sphere_filter.setModelType(pcl::SACMODEL_SPHERE);
        sphere_filter.setInputCloud(cloud);
        sphere_filter.filter(*cloud_sphere_filtered);
    Extract Sphere
  • 相关阅读:
    X3850M2安装CertOS 7 KVM 2--Mount
    X3850M2安装CertOS 7 KVM 2--VNC
    X3850M2安装CertOS 7 KVM
    vs2012 opencv 配置
    asp.net MVC code first Migrations : Model 同步到DB中
    HyperV采用硬盘拷贝的方式迁移虚拟机后的问题处理
    事后诸葛亮
    个人作业——软件产品案例分析
    冲刺总结随笔
    Alpha第九天
  • 原文地址:https://www.cnblogs.com/larry-xia/p/11008583.html
Copyright © 2011-2022 走看看