zoukankan      html  css  js  c++  java
  • 机器学习基础

    统计学习关于数据的基本假设是同类数据具有一定的统计规律性,同类数据指的是具有某种共同性质的数据,所以可用概率统计方法加以处理。比如,可用随机变量描述数据中的特征,用概率分布描述数据的统计规律。

    统计学习总的目标是考虑学习什么样的模型如何学习模型,以使模型能对数据进行准确的预测与分析,同时也要考虑尽可能的提高学习效率。

    统计学习方法的步骤:

    l 得到一个有限的训练数据集合

    l 确定包含所有可能模型的假设空间,即学习模型的集合

    l 确定模型选择的准则,即学习的策略

    l 实现求解最优模型的算法

    l 通过学习方法选择最优的模型

    l 利用最优模型对新数据进行预测或分析

    统计学习包括监督学习、非监督学习、半监督学习和强化学习。

    训练误差和测试误差与模型复杂度的关系:当模型复杂度增大时,训练误差会逐渐减小并趋向于0,测试误差会先减小,达到最小值后又增大。当模型的复杂度过大时,过拟合现象就会发生。

    生成模型与判别模型

    生成方法:由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y/X)作为预测的模型。典型的生成模型有朴素贝叶斯法和隐马尔科夫模型。

    判别方法:由数据直接学习决策函数f(X)或者条件概率分布P(Y/X)作为预测的模型。判别方法往往学习的准确率更高。

  • 相关阅读:
    诡异的Integer
    你已经创建了多少个对象?
    静态方法中使用非静态化数据
    静态化初始块的执行顺序
    java中的多构造函数以及类字段的初始化顺序
    java中类的构造方法出错点
    程序员修炼之道读后感
    纯随机数发生器,以及函数重载的问题
    递归判断回文
    使用jQuery操作DOM元素
  • 原文地址:https://www.cnblogs.com/larry-xia/p/9130503.html
Copyright © 2011-2022 走看看