zoukankan      html  css  js  c++  java
  • Spring Cloud Data Flow用Shell来操作,方便建立CICD

    1 前言

    欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章!

    之前我们用两篇文章讲解了Spring Cloud Data Flow,例子都是用UI操作的,但我们在Linux系统上经常是无法提供界面来操作,集成在Jenkins上也无法使用UI。好在官方提供了Data Flow Shell工具,可以在命令行模式下进行操作,非常方便。

    相关文章可参考:

    Spring Cloud Data Flow初体验,以Local模式运行

    把Spring Cloud Data Flow部署在Kubernetes上,再跑个任务试试

    Spring Cloud Data Flow Server提供了可操作的REST API,所以这个Shell工具的本质还是通过调用REST API来交互的。

    2 常用操作

    2.1 启动

    首先要确保我们已经安装有Java环境和下载了可执行的jar包:spring-cloud-dataflow-shell-2.5.3.RELEASE.jar

    然后启动如下:

    $ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar
    

    默认是连接了http://localhost:9393Server,可以通过--dataflow.uri=地址来指定。如果需要认证信息,需要加上--dataflow.username=用户 --dataflow.password=密码

    比如我们连接之前安装在Kubernetes上的Server如下:

    $ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar --dataflow.uri=http://localhost:30093
    

    2.2 Application操作

    介绍一下Application相关操作:

    列出所有目前注册的app

    dataflow:>app list
    ╔═══╤══════╤═════════╤════╤════════════════════╗
    ║app│source│processor│sink│        task        ║
    ╠═══╪══════╪═════════╪════╪════════════════════╣
    ║   │      │         │    │composed-task-runner║
    ║   │      │         │    │timestamp-batch     ║
    ║   │      │         │    │timestamp           ║
    ╚═══╧══════╧═════════╧════╧════════════════════╝
    

    查看某个app的信息:

    dataflow:>app info --type task timestamp
    

    清除app注册信息:

    dataflow:>app unregister --type task timestamp
    Successfully unregistered application 'timestamp' with type 'task'.
    

    清除所有app注册信息:

    dataflow:>app all unregister
    Successfully unregistered applications.
    dataflow:>app list 
    No registered apps.
    You can register new apps with the 'app register' and 'app import' commands.
    

    注册一个app

    dataflow:>app register --name timestamp-pkslow --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE
    Successfully registered application 'task:timestamp-pkslow'
    dataflow:>app list
    ╔═══╤══════╤═════════╤════╤════════════════╗
    ║app│source│processor│sink│      task      ║
    ╠═══╪══════╪═════════╪════╪════════════════╣
    ║   │      │         │    │timestamp-pkslow║
    ╚═══╧══════╧═════════╧════╧════════════════╝
    

    批量导入app,可以从一个URL或一个properties文件导入:

    dataflow:>app import https://dataflow.spring.io/task-docker-latest
    Successfully registered 3 applications from [task.composed-task-runner, task.timestamp.metadata, task.composed-task-runner.metadata, task.timestamp-batch.metadata, task.timestamp-batch, task.timestamp]
    

    需要注意的是,在注册或导入app时,如果重复的话,默认是无法导入的,不会覆盖。如果想要覆盖,可以加参数--force

    dataflow:>app register --name timestamp-pkslow --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE
    Command failed org.springframework.cloud.dataflow.rest.client.DataFlowClientException: The 'task:timestamp-pkslow' application is already registered as docker:springcloudtask/timestamp-task:2.1.1.RELEASE
    The 'task:timestamp-pkslow' application is already registered as docker:springcloudtask/timestamp-task:2.1.1.RELEASE
    
    dataflow:>app register --name timestamp-pkslow --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE --force
    Successfully registered application 'task:timestamp-pkslow'
    

    2.3 Task操作

    列出task

    dataflow:>task list
    ╔════════════════╤════════════════════════════════╤═══════════╤═══════════╗
    ║   Task Name    │        Task Definition         │description│Task Status║
    ╠════════════════╪════════════════════════════════╪═══════════╪═══════════╣
    ║timestamp-pkslow│timestamp                       │           │COMPLETE   ║
    ║timestamp-two   │<t1: timestamp || t2: timestamp>│           │ERROR      ║
    ║timestamp-two-t1│timestamp                       │           │COMPLETE   ║
    ║timestamp-two-t2│timestamp                       │           │COMPLETE   ║
    ╚════════════════╧════════════════════════════════╧═══════════╧═══════════╝
    

    删除一个task,这里我们删除的是一个组合task,所以会把子task也一并删除了:

    dataflow:>task destroy timestamp-two
    Destroyed task 'timestamp-two'
    

    删除所有task,会有风险提示:

    dataflow:>task all destroy 
    Really destroy all tasks? [y, n]: y
    All tasks destroyed
    
    dataflow:>task list
    ╔═════════╤═══════════════╤═══════════╤═══════════╗
    ║Task Name│Task Definition│description│Task Status║
    ╚═════════╧═══════════════╧═══════════╧═══════════╝
    

    创建一个task

    dataflow:>task create timestamp-pkslow-t1 --definition "timestamp --format="yyyy"" --description "pkslow timestamp task"
    Created new task 'timestamp-pkslow-t1'
    
    

    启动一个task并查看状态,启动时需要记录执行ID,然后通过执行ID来查询状态:

    dataflow:>task launch timestamp-pkslow-t1
    Launched task 'timestamp-pkslow-t1' with execution id 8
    dataflow:>task execution status 8
    

    查看所有task执行并查看执行日志:

    dataflow:>task execution list 
    
    
    dataflow:>task execution log 8
    
      .   ____          _            __ _ _
     /\ / ___'_ __ _ _(_)_ __  __ _    
    ( ( )\___ | '_ | '_| | '_ / _` |    
     \/  ___)| |_)| | | | | || (_| |  ) ) ) )
      '  |____| .__|_| |_|_| |_\__, | / / / /
     =========|_|==============|___/=/_/_/_/
     :: Spring Boot ::       (v2.1.13.RELEASE)
    
    2020-08-01 17:20:51.626  INFO 1 --- [       Thread-5] com.zaxxer.hikari.HikariDataSource       : HikariPool-1 - Shutdown initiated...
    2020-08-01 17:20:51.633  INFO 1 --- [       Thread-5] com.zaxxer.hikari.HikariDataSource       : HikariPool-1 - Shutdown completed.
    

    2.4 Http请求

    可以进行http请求:

    dataflow:>http get https://www.pkslow.com
    
    dataflow:>http post --target https://www.pkslow.com --data "data"
    > POST (text/plain) https://www.pkslow.com data
    > 405 METHOD_NOT_ALLOWED
    
    Error sending data 'data' to 'https://www.pkslow.com'
    

    2.5 读取并执行文件

    先准备一个脚本文件,用来放Data Flow Shell命令,文件名为pkslow.shell,内容如下:

    version
    date
    app list
    

    执行与结果如下:

    dataflow:>script pkslow.shell
    version
    2.5.3.RELEASE
    date
    Sunday, August 2, 2020 1:59:34 AM CST
    app list
    ╔═══╤══════╤═════════╤════╤════════════════════╗
    ║app│source│processor│sink│        task        ║
    ╠═══╪══════╪═════════╪════╪════════════════════╣
    ║   │      │         │    │timestamp-pkslow    ║
    ║   │      │         │    │composed-task-runner║
    ║   │      │         │    │timestamp-batch     ║
    ║   │      │         │    │timestamp           ║
    ╚═══╧══════╧═════════╧════╧════════════════════╝
    
    Script required 0.045 seconds to execute
    dataflow:>
    

    但其实我们在CI/CDpipeline中,并不想先启动一个shell命令行,然后再执行一个脚本。我们想一步到位,直接执行,执行完毕后退出shell命令行。这也是有办法的,可以在启动的时候通过 --spring.shell.commandFile指定文件,如果有多个文件则用逗号,分隔。如下所示:

    $ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar --dataflow.uri=http://localhost:30093 --spring.shell.commandFile=pkslow.shell
    Successfully targeted http://localhost:30093
    2020-08-02T02:03:49+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - 2.5.3.RELEASE
    2020-08-02T02:03:49+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Sunday, August 2, 2020 2:03:49 AM CST
    2020-08-02T02:03:49+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:309 - 
    ╔═══╤══════╤═════════╤════╤════════════════════╗
    ║app│source│processor│sink│        task        ║
    ╠═══╪══════╪═════════╪════╪════════════════════╣
    ║   │      │         │    │timestamp-pkslow    ║
    ║   │      │         │    │composed-task-runner║
    ║   │      │         │    │timestamp-batch     ║
    ║   │      │         │    │timestamp           ║
    ╚═══╧══════╧═════════╧════╧════════════════════╝
    $
    

    执行完毕后,不会在shell命令行模式里,而是退回linux的终端。这正是我们所需要的。

    我们来准备一个注册应用——创建任务——执行任务的脚本试试:

    version
    date
    app register --name pkslow-app-1 --type task --uri docker:springcloudtask/timestamp-task:2.1.1.RELEASE
    task create pkslow-task-1 --definition "pkslow-app-1"
    task launch pkslow-task-1
    

    执行与结果如下:

    $ java -jar spring-cloud-dataflow-shell-2.5.3.RELEASE.jar --dataflow.uri=http://localhost:30093 --spring.shell.commandFile=pkslow.shell
    Successfully targeted http://localhost:30093
    2020-08-02T02:06:41+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - 2.5.3.RELEASE
    2020-08-02T02:06:41+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Sunday, August 2, 2020 2:06:41 AM CST
    2020-08-02T02:06:41+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Successfully registered application 'task:pkslow-app-1'
    2020-08-02T02:06:42+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Created new task 'pkslow-task-1'
    2020-08-02T02:06:51+0800 INFO main o.s.c.d.s.DataflowJLineShellComponent:311 - Launched task 'pkslow-task-1' with execution id 9
    

    这样,我们就可以实现自动化打包与部署运行了。

    3 一些使用技巧

    强大的shell工具提供了许多命令,其实不用一一记住,可以通过help命令查看所有命令:

    dataflow:>help
    

    如果只对特定的一类命令感兴趣,可以通过help xxx的方式获取帮助:

    dataflow:>help version
    * version - Displays shell version
    
    dataflow:>help app
    * app all unregister - Unregister all applications
    * app default - Change the default application version
    * app import - Register all applications listed in a properties file
    * app info - Get information about an application
    * app list - List all registered applications
    * app register - Register a new application
    * app unregister - Unregister an application
    

    shell还支持tab键补全命令。

    4 总结

    本文的命令比较多,不想造成冗长,部分执行结果就不贴出来了,原文可到官网参考。


    欢迎关注微信公众号<南瓜慢说>,将持续为你更新...

    多读书,多分享;多写作,多整理。

  • 相关阅读:
    Hive优化
    RDD
    从Hadoop MapReduce到Spark
    Spark on yarn模式
    Hive的web端配置——HWI
    Spark环境搭建
    java身份证号校验
    java手机号码、电子邮箱校验
    服务器运维的日常维护工作
    JavaSSM框架简介
  • 原文地址:https://www.cnblogs.com/larrydpk/p/13431123.html
Copyright © 2011-2022 走看看