zoukankan      html  css  js  c++  java
  • [leetcode] Best Time to Buy and Sell Stock with Cooldown

    题目:

    Say you have an array for which the ith element is the price of a given stock on day i.
    
    Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:
    
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
    After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
    Example:
    
    prices = [1, 2, 3, 0, 2]
    maxProfit = 3
    transactions = [buy, sell, cooldown, buy, sell]

    思路:维护两个数组,数组buy表示买入的最大利润,它需要考虑第i天是否买入;数组sell表达卖出的最大利润,它需要考虑第i天是否卖出。然后写出下面的递推公式:

    buy[i] = max(buy[i-1], sell[i-2] - prices[i])

    sell[i] = max(sell[i-1], buy[i-1] + prices[i])

    其中buy[0] = -prices[0], buy[1] = max(-prices[0], -prices[1]), sell[0] = 0, sell[1] = max(0, prices[1] - prices[0])

    比如:

    prices:1,  2,  3, 0, 2
    buy:   -1, -1, -1, 1, 1 
    sell    0,  1,  2, 2, 3

    代码:

        public int maxProfit(int[] prices) {
            if(prices == null || prices.length <= 1) {
                return 0;
            }
            int len = prices.length;
            int[] buy = new int[len];
            int[] sell = new int[len];
            buy[0] = -prices[0];
            buy[1] = Math.max(-prices[0], -prices[1]);
            sell[0] = 0;
            sell[1] = Math.max(0, prices[1]-prices[0]);
            for(int i = 2; i < len; i++) {
                buy[i] = Math.max(buy[i-1], sell[i-2]-prices[i]);
                sell[i] = Math.max(sell[i-1], buy[i-1]+prices[i]);
            }
            return sell[len-1];
        }
  • 相关阅读:
    Struts2_day01--导入源文件_Struts2的执行过程_查看源代码
    R语言低级绘图函数-text
    R语言低级绘图函数-rect
    R语言低级绘图函数-arrows
    R语言低级绘图函数-abline
    R语言绘图布局
    find_circ 识别circRNA 的原理
    CIRI 识别circRNA的原理
    circRNA 序列提取中的难点
    tRNA 二级结构预测可视化
  • 原文地址:https://www.cnblogs.com/lasclocker/p/5003534.html
Copyright © 2011-2022 走看看