zoukankan      html  css  js  c++  java
  • [leetcode] Best Time to Buy and Sell Stock with Cooldown

    题目:

    Say you have an array for which the ith element is the price of a given stock on day i.
    
    Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:
    
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
    After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
    Example:
    
    prices = [1, 2, 3, 0, 2]
    maxProfit = 3
    transactions = [buy, sell, cooldown, buy, sell]

    思路:维护两个数组,数组buy表示买入的最大利润,它需要考虑第i天是否买入;数组sell表达卖出的最大利润,它需要考虑第i天是否卖出。然后写出下面的递推公式:

    buy[i] = max(buy[i-1], sell[i-2] - prices[i])

    sell[i] = max(sell[i-1], buy[i-1] + prices[i])

    其中buy[0] = -prices[0], buy[1] = max(-prices[0], -prices[1]), sell[0] = 0, sell[1] = max(0, prices[1] - prices[0])

    比如:

    prices:1,  2,  3, 0, 2
    buy:   -1, -1, -1, 1, 1 
    sell    0,  1,  2, 2, 3

    代码:

        public int maxProfit(int[] prices) {
            if(prices == null || prices.length <= 1) {
                return 0;
            }
            int len = prices.length;
            int[] buy = new int[len];
            int[] sell = new int[len];
            buy[0] = -prices[0];
            buy[1] = Math.max(-prices[0], -prices[1]);
            sell[0] = 0;
            sell[1] = Math.max(0, prices[1]-prices[0]);
            for(int i = 2; i < len; i++) {
                buy[i] = Math.max(buy[i-1], sell[i-2]-prices[i]);
                sell[i] = Math.max(sell[i-1], buy[i-1]+prices[i]);
            }
            return sell[len-1];
        }
  • 相关阅读:
    Activity与Fragment间的通信
    Activity生命周期.lanchMode.保存状态
    网络知识
    Android内存优化(使用SparseArray和ArrayMap代替HashMap)
    进程/线程死锁产生的原因以及如何避免死锁
    Android UI框架基本概念
    android在线源码
    y音频学习
    给 Android 开发者的 RxJava 详解
    设计模式之观察者模式
  • 原文地址:https://www.cnblogs.com/lasclocker/p/5003534.html
Copyright © 2011-2022 走看看