zoukankan      html  css  js  c++  java
  • 第55届IMO 第2题

    设n≥2为一个正整数,考虑由n2个单位正方格构成的n*n的正方形棋盘,一种放置n个棋子“车”的方案被称为和平的,如果每一行每一列上正好有一个“车”.求最大的正整数k,使得对于任何一种和平放置n个棋子“车"的方案,都存在一个k×k的棋盘使得它的单位正方格中都没有“车”。

    经分析易知,若某一种放置方案是和平的,那么交换棋盘的任意两行/列得到的新方案也是和平的。

    当n为奇数时:

    假设k>=(n+1)/2, 那么对于任何一种和平放置n个棋子“车"的方案,都肯定存在一个(n+1)/2*(n+1)/2的棋盘使得它的单位正方格中都没有“车”,若要想每一行每一列上最多有一个“车”,那么车的数量最多是n-1个,也就是说放不了n个车,所以假设不成立,所以k<=(n-1)/2,当车放在棋盘主对角线上时,总棋盘左下角和右上角都有一个(n-1)/2*(n-1)/2的棋盘中没有车,所以k=(n-1)/2.

    当n为偶数时:

    假设k>=n/2+1,同理也可推出矛盾,得到k=n/2。

    综上,当n为奇数时,k=(n-1)/2;当n为偶数时,k=n/2.

  • 相关阅读:
    leetcode Super Ugly Number
    leetcode Find Median from Data Stream
    leetcode Remove Invalid Parentheses
    leetcode Range Sum Query
    leetcode Range Sum Query
    leetcode Minimum Height Trees
    hdu 3836 Equivalent Sets
    hdu 1269 迷宫城堡
    hud 2586 How far away ?
    poj 1330 Nearest Common Ancestors
  • 原文地址:https://www.cnblogs.com/lau1997/p/13616819.html
Copyright © 2011-2022 走看看