三维DP,用备忘录方式写很简单。但是正如那天讨论时说的那样,使用备忘录法,可能会对复杂度和递推公式理解不够深刻。
这道题目的递推公式很简单,但是复杂度的话。。。因为数组里的值每个都被计算仅为一次,所以应该是O(n^3)
要注意的是,最后一维的是len+1
public class Solution { public boolean isScramble(String s1, String s2) { char[] ca1 = s1.toCharArray(); char[] ca2 = s2.toCharArray(); if (s1.length() != s2.length()) return false; int len = s1.length(); if (len == 0) return true; int[][][] mx = new int[len][len][len+1]; for (int i = 0; i < len; i++) for (int j = 0; j < len; j++) for (int k = 0; k < len+1; k++) mx[i][j][k] = -1; // not visited; return isScramble(ca1, ca2, 0, 0, len, mx); } public boolean isScramble(char[] ca1, char[] ca2, int i1, int i2, int len, int[][][] mx) { if (len == 1) return ca1[i1] == ca2[i2]; if (mx[i1][i2][len] != -1) { return mx[i1][i2][len] == 1; } for (int k = 1; k < len; k++) { if (isScramble(ca1, ca2, i1, i2, k, mx) && isScramble(ca1, ca2, i1+k, i2+k, len-k, mx)) { mx[i1][i2][len] = 1; return true; } if (isScramble(ca1, ca2, i1, i2+len-k, k, mx) && isScramble(ca1, ca2, i1+k, i2, len-k, mx)) { mx[i1][i2][len] = 1; return true; } } mx[i1][i2][len] = 0; return false; } }