这道题目仍然是二分,去掉不可能的部分。用了递归,在重复的情况下,就是有可能最左边的和最右边的相等,此时就不能直接判断出区间外的元素,左右两边同时递归。有重复元素的时候,在bad case的时候会退化为O(n)
public class Solution {
public boolean search(int[] A, int target) {
return search(A, target, 0, A.length-1);
}
private boolean search(int[] A, int target, int left, int right)
{
if( left > right) return false;
if (left == right) return (A[left] == target);
if (A[left] < A[right] && (target < A[left] || target > A[right])) return false;
if (A[left] > A[right] && target > A[right] && target < A[left]) return false;
int mid = left + (right - left) / 2;
if (A[mid] == target) return true;
else
{
return search(A, target, left, mid-1) || search(A, target, mid+1, right);
}
}
}
网上有个思路更简洁,二分。如果相等导致不能二分,则直接跳过这个重复的元素。
class Solution {
public:
bool search(int A[], int n, int key) {
int l = 0, r = n - 1;
while (l <= r) {
int m = l + (r - l)/2;
if (A[m] == key) return true; //return m in Search in Rotated Array I
if (A[l] < A[m]) { //left half is sorted
if (A[l] <= key && key < A[m])
r = m - 1;
else
l = m + 1;
} else if (A[l] > A[m]) { //right half is sorted
if (A[m] < key && key <= A[r])
l = m + 1;
else
r = m - 1;
} else l++;
}
return false;
}
};