https://www.hackerrank.com/contests/illuminati/challenges/tree-covering
这道题先是在上次交流讨论了一下,然后两位百度的朋友先写完代码share出来了,觉得是道很好的题,就做了一下。https://gist.github.com/coder32167/6964331 https://gist.github.com/snakeDling/6965299
基本思想是贪心。根据题意,所选的点必然是叶子节点,那么首先找出树的直径,直径上的这两个点都要。找第三个点的时候,遍历所有的点,找出到直径(上任意一点)距离最小的叶子节点,接着以此类推找第四个点。
贪心可行的依据可直观的这么看,假设AB是树的直径,那么从树中任意一其他叶子X出发寻找最长路,要么是AX,要么是BX。这个是广为证明的一个结论,已经用于寻找直径了。
接下来就是实现,怎么求第三个点,第四个点呢。答案是递归BFS,递归到叶子节点时cover是1,然后往上回溯。对任意父节点,取子节点中cover数最大的加一,剩下的都放入vector中,最后排序。(或者放入堆中也可,就不用最后排序了。)
最后依次把这些branch加回去。过程如下示意图展示:就是先取直径上任意一点,然后根据BFS得到的排序的branch长度,一个一个按顺序将剩余段加入回去。

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
int get_root(vector<vector<int>> &tree, int root) {
int n = tree.size();
vector<bool> visit(n, false);
vector<int> len(n);
queue<int> que;
int max_len = 1;
que.push(root);
len[root] = 1;
while (!que.empty()) {
int node = que.front();
que.pop();
if (visit[node])
continue;
visit[node] = true;
int m = tree[node].size();
if (len[node] > max_len) {
root = node;
max_len = len[node];
}
for (int i = 0; i < m; i++) {
que.push(tree[node][i]);
len[tree[node][i]] = len[node] + 1;
}
}
return root;
}
int collect_branch(vector<vector<int>> &tree, int root, vector<int> &branch, vector<bool> &visit) {
visit[root] = true;
int m = tree[root].size();
vector<int> result;
for (int i = 0; i < m; i++) {
if (visit[tree[root][i]])
continue;
int len = collect_branch(tree, tree[root][i], branch, visit);
result.push_back(len);
}
if (result.size() == 0)
return 1;
sort(result.begin(), result.end());
int ret = result.back();
result.pop_back();
for (int i = 0; i < result.size(); i++) {
branch.push_back(result[i]);
}
return ret + 1;
}
int main()
{
int n;
scanf("%d", &n);
vector<vector<int>> tree(n+1);
for (int i = 1; i < n; i++) {
int a, b;
scanf("%d", &a);
scanf("%d", &b);
tree[a].push_back(b);
tree[b].push_back(a);
}
int root = get_root(tree, 1);
vector<int> branch;
vector<bool> visit(n+1, false);
int main_branch = collect_branch(tree, root, branch, visit);
branch.push_back(main_branch);
sort(branch.begin(), branch.end());
printf("%d
", 1);
int total = 0;
for (int i = 1; i < n; i++) {
if (branch.size() != 0) {
total += branch.back();
branch.pop_back();
}
printf("%d
", total);
}
return 0;
}