https://www.hackerrank.com/contests/infinitum-aug14/challenges/jim-beam
学习了线段相交的判断法。首先是叉乘,叉乘的几何意义是有向的平行四边形的面积(除以2就是三角形的面积)。如果ABD和ABC正负相反,说明C和D在AB两侧,同样的,再判断A和B是否在CD两侧即可。当某三角形面积为0时,需要判断是否在线段上。
#include <iostream>
using namespace std;
typedef long long LL;
LL cross_product(LL ax, LL ay, LL bx, LL by, LL cx, LL cy) {
return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax);
}
bool inside(LL ax, LL ay, LL bx, LL by, LL cx, LL cy) {
return (min(ax, bx) <= cx && cx <= max(ax, bx)
&& min(ay, by) <= cy && cy <= max(ay, by));
}
bool intersect(LL ax, LL ay, LL bx, LL by, LL cx, LL cy) {
LL abc = cross_product(ax, ay, bx, by, cx, cy);
LL abd = cross_product(ax, ay, bx, by, 0, 0);
LL cda = cross_product(cx, cy, 0, 0, ax, ay);
LL cdb = cross_product(cx, cy, 0, 0, bx, by);
if (((abc > 0 && abd < 0)
|| (abc < 0 && abd > 0))
&& ((cda > 0 && cdb < 0)
|| (cda < 0 && cdb > 0)))
return true;
if (abc == 0 && inside(ax, ay, bx, by, cx, cy)) return true;
if (abd == 0 && inside(ax, ay, bx, by, 0, 0)) return true;
if (cda == 0 && inside(cx, cy, 0, 0, ax, ay)) return true;
if (cdb == 0 && inside(cx, cy, 0, 0, bx, by)) return true;
return false;
}
void solve() {
int x1, y1, x2, y2, x, y;
cin >> x1 >> y1 >> x2 >> y2 >> x >> y;
if (intersect(x1, y1, x2, y2, x, y))
cout << "NO" << endl;
else
cout << "YES" << endl;
}
int main() {
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}