zoukankan      html  css  js  c++  java
  • tetrahedron

    题意:

    求解一个四面体的内切球。

    解法:

    首先假设内切球球心为$(x0,x1,x2)$,可以用$r = frac{3V}{S_1+S_2+S_3+S_4}$得出半径,

    这样对于四个平面列出三个方程,解得

    $x_n = sum_{i=0}^3{Ai_{x_n} cdot S_i } / (S_1 + S_2 + S_3 + S_4)$

    这样,即可得出内切球。

    时间复杂度$O(1)$。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 
      6 #define LD double
      7 #define sqr(x) ((x)*(x))
      8 #define eps 1e-13
      9 
     10 using namespace std;
     11 
     12 struct node
     13 {
     14     LD x,y,z;
     15     void scan()
     16     {
     17         scanf("%lf%lf%lf",&x,&y,&z); 
     18     }
     19     void print()
     20     {
     21         printf("%.4lf %.4lf %.4lf
    ",x,y,z);
     22     }
     23     LD length()
     24     {
     25         return sqrt(sqr(x)+sqr(y)+sqr(z));
     26     }
     27     node operator+(const node &tmp)
     28     {
     29         return (node){x+tmp.x,y+tmp.y,z+tmp.z};
     30     }    
     31     node operator-(const node &tmp)
     32     {
     33         return (node){x-tmp.x,y-tmp.y,z-tmp.z};
     34     }
     35     node operator/(LD tmp)
     36     {
     37         return (node){x/tmp,y/tmp,z/tmp};
     38     }
     39     node operator*(LD tmp)
     40     {
     41         return (node){x*tmp,y*tmp,z*tmp};
     42     }
     43 };
     44 
     45 node cross(node a,node b)
     46 {
     47     node ans;
     48     ans.x = a.y*b.z - b.y*a.z;
     49     ans.y = b.x*a.z - a.x*b.z;
     50     ans.z = a.x*b.y - b.x*a.y;
     51     return ans;
     52 }
     53 
     54 LD dist(node a,node b)
     55 {
     56     return (b-a).length();
     57 }
     58 
     59 LD dot(node a,node b)
     60 {
     61     return a.x*b.x + a.y*b.y + a.z*b.z;
     62 }
     63 
     64 LD get_angle(node a,node b)
     65 {
     66     LD tmp = dot(a,b)/a.length()/b.length();
     67     return acos(tmp);
     68 }
     69 
     70 node get_node(node A,node B,node C)
     71 {
     72     LD Lth = (B-A).length() + (C-A).length() + (C-B).length();
     73     cout << sqr(Lth-4) << endl;
     74     LD r = fabs(cross(B-A,C-A).length()) / Lth;
     75     cout << r*r << endl;
     76     node v1 = C-A;
     77     node v2 = B-A;
     78     node v = (v1+v2)/(v1+v2).length();
     79     LD d = (C-A).length()/2;
     80     LD L = sqrt(sqr(d)+sqr(r));
     81     v = v*L;
     82     return A+v;
     83 }
     84 
     85 int main()
     86 {
     87     node A,B,C,D;
     88     while(~scanf("%lf%lf%lf",&A.x,&A.y,&A.z))
     89     {
     90         B.scan();
     91         C.scan();
     92         D.scan();
     93         if(fabs(dot(cross(B-A,C-A),D-A)) < eps)
     94         {
     95             puts("O O O O");
     96             continue;
     97         }
     98         LD S1 = fabs(cross(B-D,C-D).length())/2;
     99         LD S2 = fabs(cross(D-A,C-A).length())/2;
    100         LD S3 = fabs(cross(B-A,D-A).length())/2;
    101         LD S4 = fabs(cross(B-A,C-A).length())/2;
    102         LD Ve = fabs(dot(cross(B-A,C-A),D-A))/6;
    103         LD R = 3*Ve / ((S1+S2+S3+S4));
    104         node ans; 
    105         ans.x = (S1*A.x + S2*B.x + S3*C.x + S4*D.x)/(S1+S2+S3+S4);
    106         ans.y = (S1*A.y + S2*B.y + S3*C.y + S4*D.y)/(S1+S2+S3+S4);
    107         ans.z = (S1*A.z + S2*B.z + S3*C.z + S4*D.z)/(S1+S2+S3+S4);
    108         printf("%.4lf %.4lf %.4lf %.4lf
    ",ans.x,ans.y,ans.z,R);
    109     }
    110     return 0;
    111 }
    112 /*
    113 0 0 0 2 0 0 0 0 2 0 2 0
    114 0 0 0 2 0 0 3 0 0 4 0 0
    115 */
    View Code
  • 相关阅读:
    win10 下安装pip方法
    visual studio 打开微软MVC3示例MvcMusicStore的详细修改方法
    SQL Server 使用问题解答(持续更新中)
    SQL server数据库备份还原问题备忘(亲测有效)
    visual studio错误中断处理
    Eclipse调试
    nginx +lua +redis 构建自动缓存系统
    批量更新memcached缓存
    SQL Server 2008 表值参数用法
    架构设计方案
  • 原文地址:https://www.cnblogs.com/lawyer/p/6589702.html
Copyright © 2011-2022 走看看