进程池和线程池需要导入模块concurrent future的 ThreadPoolExecutor(线程池) ProcessPoolExecutor(进程池)
#1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor: 进程池,提供异步调用 Both implement the same interface, which is defined by the abstract Executor class. #2 基本方法 #submit(fn, *args, **kwargs) 异步提交任务 #map(func, *iterables, timeout=None, chunksize=1) 取代for循环submit的操作 #shutdown(wait=True) 相当于进程池的pool.close()+pool.join()操作 wait=True,等待池内所有任务执行完毕回收完资源后才继续 wait=False,立即返回,并不会等待池内的任务执行完毕 但不管wait参数为何值,整个程序都会等到所有任务执行完毕 submit和map必须在shutdown之前 #result(timeout=None) 取得结果 #add_done_callback(fn) 回调函数
进程池和线程池有两种提交任务的方式:同步提交和异步提交
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import time,random,os def task(name,n): print('%s %s is running'%(name,os.getpid())) time.sleep(random.randint(1,3)) return n**2 if __name__ == '__main__': p=ProcessPoolExecutor(4) # 提交任务的两种方式: # 同步调用:提交完一个任务之后,就在原地等待,等待任务完完整整地运行完毕拿到结果后,在执行下一行代码,会导致任务是串行执行的 # 异步调用:提交完一个任务之后,不在原地等待,而是直接执行下一行代码,会导致任务是并发运行的结果future对象会在任务运行完毕后自动传回给回调函数 l=[] for i in range(10): #同步提交 res=p.submit(task,'进程pid',i).result() print(res) # 异步提交 future=p.submit(task,'进程pid',i) l.append(future) p.shutdoen(wait=True)#关闭进程池的入口,并且在原地等待进程池内所有任务运行完毕 for future in l: print(future.result()) print('主')
下面的代码是异步提交不阻塞 获取爬取页面的信息
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import time,random,os from threading import current_thread import requests def get(url): print('%s get %s'%(current_thread().name,url)) time.sleep(3) reponse=requests.get(url) if reponse.status_code==200: res=reponse.text else: res='下载失败' return res def parse(future): time.sleep(1) res=future.result() print('%s :%s'%(current_thread().name,len(res))) if __name__ == '__main__': urls = [ 'https://www.baidu.com', 'https://www.sina.com.cn', 'https://www.tmall.com', 'https://www.jd.com', 'https://www.python.org', 'https://www.openstack.org', 'https://www.baidu.com', ] p=ThreadPoolExecutor(4) for url in urls: future=p.submit(get,url) #future=p.submit(get,url).result()则变成阻塞 必须等待获取结果 future.add_done_callback(parse)#parse会在任务运行完毕后自动触发,然后接收一个参数future对象 p.shutdown(wait=True) print('主',current_thread().name)
协程
目标:在线程下实现并发
并发(多个任务看起来是同时执行就是并发):切换+保存状态
协程是单线程实现并发
注意:协程是程序员意淫出来的东西,操作系统里只有进程和线程的概念(操作系统调度的是线程)
在单线程下实现多个任务间遇到 IO 就切换就可以降低单线程的 IO 时间,从而最大限度地提升单线程的效率
协程:是单线程下的并发。协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
需要强调的是:
#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换
优点如下:
#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制)
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程
#用法 g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值
import gevent def eat(name): print('%s 吃'%name) gevent.sleep(2) print('%s 喝'%name) def play(name): print('%s 玩'%name) gevent.sleep(1) print('%s 玩2'%name) g1=gevent.spawn(eat,'abc') g2=gevent.spawn(play,'abc') gevent.joinall([g1,g2]) print('main')
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接之别的需要用下面一行代码,打补丁,就可以识别了
from gevent importmonkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
from gevent import monkey;monkey.patch_all() import gevent import time def eat(): print('eat food 1') time.sleep(2) print('eat food 2') def play(): print('play 1') time.sleep(1) print('play 2') g1=gevent.spawn(eat) g2=gevent.spawn(play_phone) gevent.joinall([g1,g2]) print('主')
gevent应用举例
#服务端 from gevent import monkey;monkey.patch_all() from socket import * from gevent import spawn def clinet(conn): while True: try: data=conn.recv(1024) if len(data)==0:break conn.send(data) except ConnectionResetError: break conn.close() def server(ip,port,listen=5): server1=socket(AF_INET,SOCK_STREAM) server1.bind(ip,port) server1.listen(listen) while True: conn,client_addr=server1.accept() spawn(clinet,conn) if __name__ == '__main__': g1=spawn(server,'127.0.0.1',8080) g1.join()
#客户端 from threading import Thread,current_thread from socket import * def client(): client=socket(AF_INET,SOCK_STREAM) client.connect(('127.0.0.1',8080)) n=0 while True: msg='%s say hello%s'%(current_thread().name,n) n+=1 client.send(msg.encode('utf-8')) data=client.recv(1024) print(data.decode('utf-8')) if __name__ == '__main__': for i in range(100): t=Thread(target=client,) t.start()