zoukankan      html  css  js  c++  java
  • 斜率和问题

    如图,已知椭圆 (dfrac{x^2}{a^2}+dfrac{y^2}{b^2}=1(a>b>0)) 经过点 (P(sqrt3,dfrac12)) ,离心率 (e=dfrac{sqrt3}{2}) ,直线 (l) 的方程为 (x=dfrac{4sqrt3}{3}) .

    (1) 求椭圆 (C) 的方程;

    (2) (AB) 是经过右焦点 (F) 的任意一条弦 (不经过点 (P) ) ,设直线 (AB)(l) 相交于点 (M) ,记直线 (PA,PB,PM) 的斜率依次为 (k_1,k_2,k_3) . 问:是否存在 (lambda) ,使得 (k_1+k_2=lambda k_3) ? 若存在,求出 (lambda) 的值,若不存在,请说明理由.

    解析:

    (1) 依题意有

    [egin{cases}dfrac{3}{a^2}+dfrac{1}{4b^2}=1 \[1ex] dfrac{c}{a}=dfrac{sqrt3}{2}\[1ex]a^2=b^2+c^2end{cases}Longrightarrowegin{cases}a^2=4\b^2=1end{cases} ]

    则椭圆的标准方程为 (dfrac{x^2}{4}+y^2=1) .

    (2) ①当直线 (AB) 的斜率为 (0) 时,其方程为 (y=0) ,解得 (k_1=1-dfrac{sqrt3}{2},k_2=-1-dfrac{sqrt3}{2},k_3=-dfrac{sqrt3}{2}) ,则

    [k_1+k_2=-sqrt3=2k_3Longrightarrowlambda=2 ]

    ②当直线 (AB) 的斜率不为 (0) 时,设为 (x=my+sqrt3)(A(x_1,y_1),B)(x_2,y_2)) 联立

    [egin{cases}x=my+sqrt3\x^2+4y^2=4end{cases}Longrightarrow (m^2+4)y^2+2sqrt3my-1=0 ]

    (y_1+y_2=-dfrac{2sqrt3m}{m^2+4},y_1y_2=-dfrac{1}{m^2+4}) .

    [egin{align}k_1+k_2&=dfrac{y_1-dfrac12}{x_1-sqrt3}+dfrac{y_2-dfrac12}{x_2-sqrt3}=dfrac{y_1-dfrac12}{my_1}+dfrac{y_2-dfrac12}{my_2}=dfrac2m-dfrac{1}{2m}cdotdfrac{y_1+y_2}{y_1y_2}\[2ex]&=dfrac2m-dfrac{1}{2m}cdotdfrac{-dfrac{2sqrt3m}{m^2+4}}{-dfrac{1}{m^2+4}}=dfrac{2}{m}-sqrt3end{align} ]

    解得 (M(dfrac{4}{sqrt3},dfrac{1}{sqrt3m})) ,则 (k_3=dfrac{dfrac12-dfrac{1}{sqrt3m}}{sqrt3-dfrac{4}{sqrt3}}=dfrac{1}{m}-dfrac{sqrt3}{2}) ,所以 (k_1+k_2=2k_3) ,综上,存在 (lambda=2) 满足题设条件 .

  • 相关阅读:
    POJ 1811 Prime Test 素性测试 分解素因子
    sysbench的安装与使用
    电脑中已有VS2005和VS2010安装.NET3.5失败的解决方案
    I.MX6 show battery states in commandLine
    RPi 2B Raspbian system install
    I.MX6 bq27441 driver porting
    I.MX6 隐藏电池图标
    I.MX6 Power off register hacking
    I.MX6 Goodix GT9xx touchscreen driver porting
    busybox filesystem httpd php-5.5.31 sqlite3 webserver
  • 原文地址:https://www.cnblogs.com/lbyifeng/p/14157286.html
Copyright © 2011-2022 走看看