zoukankan      html  css  js  c++  java
  • 无监督学习和强化学习机器学习

    无监督学习:



    在此学习方式下,输入数据部分被标识,部分没有被标识,这样的学习模型能够用来进行预測,可是模型首先须要学习数据的内在结构以便合理的组织数据来进行预測。应用场景包含分类和回归。算法包含一些对经常使用监督式学习算法的延伸。这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预測。

    如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。

    强化学习



    在这样的学习模式下,输入数据作为对模型的反馈。不像监督模型那样,输入数据不过作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立马作出调整。常见的应用场景包含动态系统以及机器人控制等。

    常见算法包含Q-Learning以及时间差学习(Temporal difference learning)。

    在企业数据应用的场景下。 人们最经常使用的可能就是监督式学习和非监督学习模式。

    在诸如图像识别区域。因为有很多非识别数据和少量的数据的可识别。 现在半监督学习是一个非常热门的话题。 强化学习,和其他领域的需要在许多其他的机器人控制系统控制应用。




  • 相关阅读:
    C# 产生JSON串
    JS JSON的一些操作
    这两天整合高德的一些功能
    图片压缩传输
    服务器远程调试
    Swagger的使用和部署
    Springcloud多模块整合mybatis-plus
    Spring Alibaba Nacos + Seata 1.4.0搭建使用
    java11开箱简评
    npm介绍及安装使用
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4592278.html
Copyright © 2011-2022 走看看