zoukankan      html  css  js  c++  java
  • UVA

     

    II U  ONLINE   C ON TEST   2 008

    Problem D: GCD LCM

    Input: standard input
    Output: standard output

    The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the smallest positive integer that is divisible by both the integers. A positive integer can be the GCD of many pairs of numbers. Similarly, it can be the LCM of many pairs of numbers. In this problem, you will be given two positive integers. You have to output a pair of numbers whose GCD is the first number and LCM is the second number.

    Input

    The first line of input will consist of a positive integer T. T denotes the number of cases. Each of the next T lines will contain two positive integer, G and L.

    Output

    For each case of input, there will be one line of output. It will contain two positive integers a and b, a ≤ b, which has a GCD of G and LCM of L. In case there is more than one pair satisfying the condition, output the pair for which a is minimized. In case there is no such pair, output -1.

    Constraints

    -           T ≤ 100

    -           Both G and L will be less than 231.

    Sample Input

    Output for Sample Input

    2

    1 2

    3 4

    1 2

    -1

    Problem setter: Shamim Hafiz

    题意: 给你两个数的gcd和lcm,让你求时候是唯一的一对n,m,输出最小的一对

    思路:设n = a*b*c*d, m = a*b*c*e, 那么gcd=a*b*c, lcm = a*b*c*d*e,那么假设不是唯一的话。那么lcm%gcd != 0,由于d和e的位置能够排列。要唯一的话,一定是lcm是gcd的倍数,且这对就是最小的

    #include <iostream>
    #include <cstdio>
    #include <cstdio>
    #include <cstring>
    typedef long long ll;
    using namespace std;
    
    int main() {
    	int t, n, m;
    	scanf("%d", &t);
    	while (t--) {
    		scanf("%d%d", &n, &m);
    		if (m % n == 0)
    			printf("%d %d
    ", n, m);
    		else printf("-1
    ");
    	}
    	return 0;
    }


  • 相关阅读:
    在 MAC 下配置 Nginx
    Color Schema 配色随笔
    .Net与 WebAssembly 随笔
    关于Xamarin、Qml、数据绑定、MVC、MVVM 相关的散讲
    用Nuget部署程序包
    Qt3D
    Qt3D Shader
    Qt QML 2D shader
    LearnOpenGL
    Qt3D 5.9 and future
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4593792.html
Copyright © 2011-2022 走看看