zoukankan      html  css  js  c++  java
  • Segment

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1y1x2y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!
    
    
    # include <iostream>
    # include <cmath>
    # include <cstdio>
    using namespace std;
    
    # define EPS 1e-8
    
    int n;
    
    struct Segment
    {
        double x1,x2,y1,y2;
    }segment[1000];
    
    double distance(double x1,double y1,double x2,double y2)
    {
        return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    }
    
    double fun(double x1,double y1,double x2,double y2,double x0,double y0)
    {
        return  (x2-x1)*(y0-y1)-(x0-x1)*(y2-y1);
    }
    
    bool search(double x1,double y1,double x2,double y2)
    {
        int i;
        //推断是不是同一条直线;
        if(distance(x1,y1,x2,y2)<EPS)    return false;
        //利用叉积定理。推断是不是和其它的线段相交:
        for(i=0;i<n;i++)
        {
            if(fun(x1,y1,x2,y2,segment[i].x1,segment[i].y1)*
               fun(x1,y1,x2,y2,segment[i].x2,segment[i].y2)>EPS)    return false;
        }
        return true;
    }
    
    int main ()
    {
        //freopen("a.txt","r",stdin);
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            int i;
            for(i=0;i<n;i++)
                scanf("%lf%lf%lf%lf",&segment[i].x1,&segment[i].y1,&segment[i].x2,&segment[i].y2);
            if(n==1)    { printf("Yes!
    "); continue;}
    
            int ans=0;
            
            //将全部的线段都列举出来。
            for(i=0;i<n;i++)
                for(int j=i+1;j<n;j++)
            {
                if(search(segment[i].x1,segment[i].y1,segment[j].x1,segment[j].y1)||
                   search(segment[i].x1,segment[i].y1,segment[j].x2,segment[j].y2)||
                   search(segment[i].x2,segment[i].y2,segment[j].x1,segment[j].y1)||
                   search(segment[i].x2,segment[i].y2,segment[j].x2,segment[j].y2))
                    ans=1;
            }
            if(ans)    printf("Yes!
    ");
            else    printf("No!
    ");
        }
        return 0;
    }
    


  • 相关阅读:
    浴谷夏令营2017.8.1数论的整理
    BZOJ1483: [HNOI2009]梦幻布丁
    NOIP2014-11-3模拟赛
    BZOJ3884: 上帝与集合的正确用法
    BZOJ4869: [Shoi2017]相逢是问候
    计蒜客NOIP2017提高组模拟赛(三)day1
    NOIP2014-9-6模拟赛
    NOIP2014-7-7模拟赛
    zoj Little Keng(快速幂)
    多校Key Set (快速幂)
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4600988.html
Copyright © 2011-2022 走看看