zoukankan      html  css  js  c++  java
  • Segment

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1y1x2y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!
    
    
    # include <iostream>
    # include <cmath>
    # include <cstdio>
    using namespace std;
    
    # define EPS 1e-8
    
    int n;
    
    struct Segment
    {
        double x1,x2,y1,y2;
    }segment[1000];
    
    double distance(double x1,double y1,double x2,double y2)
    {
        return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    }
    
    double fun(double x1,double y1,double x2,double y2,double x0,double y0)
    {
        return  (x2-x1)*(y0-y1)-(x0-x1)*(y2-y1);
    }
    
    bool search(double x1,double y1,double x2,double y2)
    {
        int i;
        //推断是不是同一条直线;
        if(distance(x1,y1,x2,y2)<EPS)    return false;
        //利用叉积定理。推断是不是和其它的线段相交:
        for(i=0;i<n;i++)
        {
            if(fun(x1,y1,x2,y2,segment[i].x1,segment[i].y1)*
               fun(x1,y1,x2,y2,segment[i].x2,segment[i].y2)>EPS)    return false;
        }
        return true;
    }
    
    int main ()
    {
        //freopen("a.txt","r",stdin);
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            int i;
            for(i=0;i<n;i++)
                scanf("%lf%lf%lf%lf",&segment[i].x1,&segment[i].y1,&segment[i].x2,&segment[i].y2);
            if(n==1)    { printf("Yes!
    "); continue;}
    
            int ans=0;
            
            //将全部的线段都列举出来。
            for(i=0;i<n;i++)
                for(int j=i+1;j<n;j++)
            {
                if(search(segment[i].x1,segment[i].y1,segment[j].x1,segment[j].y1)||
                   search(segment[i].x1,segment[i].y1,segment[j].x2,segment[j].y2)||
                   search(segment[i].x2,segment[i].y2,segment[j].x1,segment[j].y1)||
                   search(segment[i].x2,segment[i].y2,segment[j].x2,segment[j].y2))
                    ans=1;
            }
            if(ans)    printf("Yes!
    ");
            else    printf("No!
    ");
        }
        return 0;
    }
    


  • 相关阅读:
    UVa 820 因特网带宽(最大流)
    UVa 1001 奶酪里的老鼠(Dijkstra或Floyd)
    UVa 821 网页跳跃(Floyd)
    UVa 11624 大火蔓延的迷宫
    UVa 10881 蚂蚁
    UVa 11300 分金币
    UVa 11729 突击战
    《额尔古纳河右岸》读书笔记
    HDU 1083 Courses(二分图匹配模板)
    UVa 10618 跳舞机
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4600988.html
Copyright © 2011-2022 走看看