zoukankan      html  css  js  c++  java
  • Segment

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1y1x2y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!
    
    
    # include <iostream>
    # include <cmath>
    # include <cstdio>
    using namespace std;
    
    # define EPS 1e-8
    
    int n;
    
    struct Segment
    {
        double x1,x2,y1,y2;
    }segment[1000];
    
    double distance(double x1,double y1,double x2,double y2)
    {
        return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    }
    
    double fun(double x1,double y1,double x2,double y2,double x0,double y0)
    {
        return  (x2-x1)*(y0-y1)-(x0-x1)*(y2-y1);
    }
    
    bool search(double x1,double y1,double x2,double y2)
    {
        int i;
        //推断是不是同一条直线;
        if(distance(x1,y1,x2,y2)<EPS)    return false;
        //利用叉积定理。推断是不是和其它的线段相交:
        for(i=0;i<n;i++)
        {
            if(fun(x1,y1,x2,y2,segment[i].x1,segment[i].y1)*
               fun(x1,y1,x2,y2,segment[i].x2,segment[i].y2)>EPS)    return false;
        }
        return true;
    }
    
    int main ()
    {
        //freopen("a.txt","r",stdin);
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            int i;
            for(i=0;i<n;i++)
                scanf("%lf%lf%lf%lf",&segment[i].x1,&segment[i].y1,&segment[i].x2,&segment[i].y2);
            if(n==1)    { printf("Yes!
    "); continue;}
    
            int ans=0;
            
            //将全部的线段都列举出来。
            for(i=0;i<n;i++)
                for(int j=i+1;j<n;j++)
            {
                if(search(segment[i].x1,segment[i].y1,segment[j].x1,segment[j].y1)||
                   search(segment[i].x1,segment[i].y1,segment[j].x2,segment[j].y2)||
                   search(segment[i].x2,segment[i].y2,segment[j].x1,segment[j].y1)||
                   search(segment[i].x2,segment[i].y2,segment[j].x2,segment[j].y2))
                    ans=1;
            }
            if(ans)    printf("Yes!
    ");
            else    printf("No!
    ");
        }
        return 0;
    }
    


  • 相关阅读:
    高斯消元学习
    HDU 4596 Yet another end of the world(解一阶不定方程)
    Codeforces Round #318 div2
    HDU 4463 Outlets(一条边固定的最小生成树)
    HDU 4458 Shoot the Airplane(计算几何 判断点是否在n边形内)
    HDU 4112 Break the Chocolate(简单的数学推导)
    HDU 4111 Alice and Bob (博弈)
    POJ 2481 Cows(线段树单点更新)
    HDU 4288 Coder(STL水过)
    zoj 2563 Long Dominoes
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4600988.html
Copyright © 2011-2022 走看看