Rabbit's String
Time Limit: 40000/20000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 288 Accepted Submission(s): 108
At first, he would divide this string into no more than k substrings. Then for each substring S, he looked at all substrings of S, and selected the one which has the largest dictionary order. Among those substrings selected in the second round, the king then choose one which has the largest dictionary order, and name it as a "magic string".
Now he wanted to figure out how to divide the string so that the dictionary order of that "magic string" is as small as possible.
For each test case, the first line contains a integer k indicating the maximum number of substrings the king could divide, and the second line is the original mysterious string which consisted of only lower letters.
The length of the mysterious string is between 1 and 105 and k is between 1 and the length of the mysterious string, inclusive.
The input ends by k = 0.
3 bbaa 2 ababa 0
b baHintFor the first test case, the king may divide the string into "b", "b" and "aa". For the second test case, the king may divide the string into "aba" and "ba".
你最多能够把它切成k个连续的子串。然后对于切出来的子串拿出他们子串字典序最大的那个(子串的子串)。
然后把全部拿出来的子串的子串字典序最大的那个串叫魔法串。
如今要你输出字典序最小的魔法串。
#include<algorithm> #include<iostream> #include<string.h> #include<stdio.h> using namespace std; const int INF=0x3f3f3f3f; const int maxn=100010; typedef long long ll; char txt[maxn]; int sa[maxn],T1[maxn],T2[maxn],ct[maxn],he[maxn],rk[maxn],n,m,cut; int mk[maxn]; ll f[maxn],ans; void getsa(char *st) { int i,k,p,*x=T1,*y=T2; for(i=0; i<m; i++) ct[i]=0; for(i=0; i<n; i++) ct[x[i]=st[i]]++; for(i=1; i<m; i++) ct[i]+=ct[i-1]; for(i=n-1; i>=0; i--) sa[--ct[x[i]]]=i; for(k=1,p=1; p<n; k<<=1,m=p) { for(p=0,i=n-k; i<n; i++) y[p++]=i; for(i=0; i<n; i++) if(sa[i]>=k) y[p++]=sa[i]-k; for(i=0; i<m; i++) ct[i]=0; for(i=0; i<n; i++) ct[x[y[i]]]++; for(i=1; i<m; i++) ct[i]+=ct[i-1]; for(i=n-1; i>=0; i--) sa[--ct[x[y[i]]]]=y[i]; for(swap(x,y),p=1,x[sa[0]]=0,i=1; i<n; i++) x[sa[i]]=y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+k]==y[sa[i]+k]?p-1:p++; } } void gethe(char *st) { int i,j,k=0; for(i=0;i<n;i++) rk[sa[i]]=i; for(i=0;i<n-1;i++) { if(k) k--; j=sa[rk[i]-1]; while(st[i+k]==st[j+k]) k++; he[rk[i]]=k; } } bool isok(ll p) { int pos,len,i,pp,cnt; pos=lower_bound(f+1,f+1+n,p)-f;//定位sa len=he[pos]+p-f[pos-1];//确定串长 for(i=0;i<n;i++) mk[i]=-1; if(n-sa[pos]>len)//看自己所属后缀是否要切 mk[sa[pos]]=sa[pos]+len-1; for(i=pos+1;i<=n;i++) { if(he[i]==0) return false; len=min(len,he[i]);//lcp mk[sa[i]]=sa[i]+len-1;//排序比pos大一定要切割。} pp=n,cnt=0; for(i=0;i<n;i++) { if(mk[i]!=-1)//能不切先不切和后面的一起切。贪心的思想。 pp=min(pp,mk[i]); if(pp==i) { cnt++; if(cnt>cut) return false; pp=n; } } return cnt<cut;//切cnt次就是cnt+1块。
} int main() { int i,pos,len; ll low,hi,mid; while(scanf("%d",&cut),cut) { scanf("%s",txt); n=strlen(txt)+1; m=128; getsa(txt); gethe(txt); n--; f[1]=n-sa[1]; for(i=2;i<=n;i++) f[i]=f[i-1]+n-sa[i]-he[i]; low=1,hi=f[n],ans=1; while(low<=hi) { mid=(low+hi)>>1; if(isok(mid)) ans=mid,hi=mid-1; else low=mid+1; } pos=lower_bound(f+1,f+1+n,ans)-f; len=he[pos]+ans-f[pos-1]; txt[sa[pos]+len]=0; printf("%s ",txt+sa[pos]); } return 0; }
版权声明:本文博主原创文章,博客,未经同意不得转载。