zoukankan      html  css  js  c++  java
  • URAL

    意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交。该 4 点连接)。

    主题链接:http://acm.timus.ru/problem.aspx?space=1&num=1966

    ——>>对于每条边,边上的两端点并入集合,枚举边与边。推断他们是否相交,是的话各点并入集合,最后看集合内元素的个数是否为n。。

    #include <cstdio>
    #include <cmath>
    
    const int MAXN = 200 + 10;
    const double EPS = 1e-8;
    
    struct POINT
    {
        double x;
        double y;
    
        POINT(){}
    
        POINT(double x, double y) : x(x), y(y){}
    } p[MAXN];
    
    int n, m;
    int fa[MAXN], cnt[MAXN];
    int u[MAXN], v[MAXN];
    
    typedef POINT Vector;
    Vector operator - (Vector A, Vector B)
    {
        return Vector(A.x - B.x, A.y - B.y);
    }
    
    int Dcmp(double x)
    {
        if (fabs(x) < EPS) return 0;
        return x > 0 ? 1 : -1;
    }
    
    double Dot(Vector A, Vector B)
    {
        return A.x * B.x + A.y * B.y;
    }
    
    double Cross(Vector A, Vector B)
    {
        return A.x * B.y - A.y * B.x;
    }
    
    bool SegmentProperIntersection(POINT a1, POINT a2, POINT b1, POINT b2)
    {
        double c1 = Cross(a2 - a1, b1 - a1);
        double c2 = Cross(a2 - a1, b2 - a1);
        double c3 = Cross(b2 - b1, a1 - b1);
        double c4 = Cross(b2 - b1, a2 - b1);
        return Dcmp(c1) * Dcmp(c2) < 0 && Dcmp(c3) * Dcmp(c4) < 0;
    }
    
    bool OnSegment(POINT p, POINT a1, POINT a2)
    {
        return Dcmp(Cross(a1 - p, a2 - p)) == 0 && Dcmp(Dot(a1 - p, a2 - p)) < 0;
    }
    
    void Init()
    {
        for (int i = 1; i <= n; ++i)
        {
            fa[i] = i;
            cnt[i] = 1;
        }
    }
    
    int Find(int x)
    {
        return x == fa[x] ? x : (fa[x] = Find(fa[x]));
    }
    
    void Union(int x, int y)
    {
        int xroot = Find(x);
        int yroot = Find(y);
    
        if (xroot != yroot)
        {
            fa[yroot] = xroot;
            cnt[xroot] += cnt[yroot];
        }
    }
    
    void Read()
    {
        for (int i = 1; i <= n; ++i)
        {
            scanf("%lf%lf", &p[i].x, &p[i].y);
        }
        for (int i = 0; i < m; ++i)
        {
            scanf("%d%d", u + i, v + i);
            Union(u[i], v[i]);
            for (int j = 1; j <= n; ++j)
            {
                if (j != u[i] && j != v[i] && OnSegment(p[j], p[u[i]], p[v[i]]))
                {
                    Union(j, u[i]);
                }
            }
        }
    }
    
    void Merge()
    {
        for (int i = 0; i < m; ++i)
        {
            for (int j = i + 1; j < m; ++j)
            {
                if (SegmentProperIntersection(p[u[i]], p[v[i]], p[u[j]], p[v[j]]))
                {
                    Union(u[i], u[j]);
                }
            }
        }
    }
    
    void Output()
    {
        cnt[Find(1)] == n ?

    puts("YES") : puts("NO"); } int main() { while (scanf("%d%d", &n, &m) == 2) { Init(); Read(); Merge(); Output(); } return 0; }



    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    C# 模式&模式匹配
    CentOS7下安装 dotnet sdk
    PLSQL 设置
    Visual Studio Code 开发 .NetCore 插件列表
    .net core 服务生命周期
    从 Asp.Net Core 2.2 迁移到 3.0 的方案
    CSRedisCore 介绍
    Entity Framework 命令
    DataAnnotations 模型配置
    依赖注入学习(理论)
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4850194.html
Copyright © 2011-2022 走看看