zoukankan      html  css  js  c++  java
  • HDU 4925 Apple Tree


    Problem Description
    I’ve bought an orchard and decide to plant some apple trees on it. The orchard seems like an N * M two-dimensional map. In each grid, I can either plant an apple tree to get one apple or fertilize the soil to speed up its neighbors’ production. When a grid is fertilized, the grid itself doesn’t produce apples but the number of apples of its four neighbor trees will double (if it exists). For example, an apple tree locates on (x, y), and (x - 1, y), (x, y - 1) are fertilized while (x + 1, y), (x, y + 1) are not, then I can get four apples from (x, y). Now, I am wondering how many apples I can get at most in the whole orchard?


     

    Input
    The input contains multiple test cases. The number of test cases T (T<=100) occurs in the first line of input.
    For each test case, two integers N, M (1<=N, M<=100) are given in a line, which denote the size of the map.
     

    Output
    For each test case, you should output the maximum number of apples I can obtain.
     

    Sample Input
    2 2 2 3 3
     

    Sample Output
    8 32 题意:一个各自要么能种一个苹果数,要么能够施肥,施肥的话,会使得它的上下左右苹果树都加倍,求最多的可能 思路:依次施肥种树计算
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    const int maxn = 110;
    
    int map[maxn][maxn];
    int n, m;
    
    int cal(int i, int j) {
        int ans = 1;
        if (map[i][j+1] == 0)
            ans <<= 1;
        if (map[i+1][j] == 0)
            ans <<= 1;
        if (map[i-1][j] == 0)
            ans <<= 1;
        if (map[i][j-1] == 0)
            ans <<= 1;
        return ans;
    }
    
    int main() {
        int t;
        scanf("%d", &t);
        while (t--) {
            scanf("%d%d", &n, &m);
            memset(map, -1, sizeof(map));
            int flag = 0;
            for (int i = 1; i <= m; i++) {
                map[1][i] = flag;
                flag = !flag;
            }
            for (int i = 2; i <= n; i++)
                for (int j = 1; j <= m; j++)
                    map[i][j] = !map[i-1][j];
            int ans = 0;
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= m; j++) 
                    if (map[i][j])
                        ans += cal(i, j);    
    
            memset(map, -1, sizeof(map));
            flag = 1;
            for (int i = 1; i <= m; i++) {
                    map[1][i] = flag;
                    flag = !flag;
                }
            for (int i = 2; i <= n; i++)
                for (int j = 1; j <= m; j++)
                    map[i][j] = !map[i-1][j];
            int tmp = 0;
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= m; j++)
                    if (map[i][j])
                        tmp += cal(i, j);
            printf("%d
    ", max(ans, tmp));
        }
        return 0;
    }


    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    BZOJ3413: 匹配
    BZOJ5084: hashit
    BZOJ2281: [Sdoi2011]黑白棋
    BZOJ4808: 马
    BZOJ3208: 花神的秒题计划Ⅰ
    BZOJ3714: [PA2014]Kuglarz
    BZOJ2102: [Usaco2010 Dec]The Trough Game
    JZOJ6676. 【2020.06.01省选模拟】查拉图斯特拉如是说 (第二类斯特林数+多项式多点求值)
    LOJ #3217. 「PA 2019」Desant(状压dp)
    JZOJ 5154.【NOI2017模拟6.20】树形图求和 (矩阵树定理)
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4906897.html
Copyright © 2011-2022 走看看