Tree
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 11570 | Accepted: 3626 |
Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
5 4 1 2 3 1 3 1 1 4 2 3 5 1 0 0
Sample Output
8
Source
我的点分治第一题~~~
树上的路径分为两类:
经过根结点。不经过根结点。
那么我们能够选择每个点为根,然后计算经过这个根结点的长度<=k的路径,再依照同样的方法计算他的全部子树中的路径条数,这样就能不重不漏。
怎样计算经过根结点且长度<=k的路径条数?
用全部的减去在同一棵子树中的就能够。
怎么计算全部的长度<=k的路径?
用dfs求出每一个点的深度,存在一个数组里。然后从小到大排个序。用两个指针扫:l=1,r=tot,在l添加的过程中满足dep[l]+dep[r]<=k的r指针是不增的,所以O(n)能够出解,再加上sort的O(nlogn)。这个操作的复杂度为O(nlogn)。
所以总的复杂度为O(递归层数*nlogn)。怎样让递归层数最少?
每次让重心(找重心【POJ 1655】)当根结点,递归层数是logn的。
于是总复杂度为O(nlog^2n)~
#include <iostream> #include <cstring> #include <algorithm> #include <cstdio> #include <cstdlib> #define M 10005 using namespace std; struct edge { int y,ne,l; }e[M*100]; int ans,all,h[M],f[M],done[M],s[M],dep[M],tot=0,size,n,k,root; void Addedge(int x,int y,int l) { tot++; e[tot].y=y; e[tot].ne=h[x]; e[tot].l=l; h[x]=tot; } void Getroot(int x,int fa) { f[x]=0; s[x]=1; for (int i=h[x];i;i=e[i].ne) { int y=e[i].y; if (y==fa||done[y]) continue; Getroot(y,x); s[x]+=s[y]; f[x]=max(f[x],s[y]); } f[x]=max(f[x],size-s[x]); if (f[x]<f[root]) root=x; } void Getdep(int x,int fa,int de) { dep[++all]=de; s[x]=1; for (int i=h[x];i;i=e[i].ne) { int y=e[i].y,l=e[i].l; if (y==fa||done[y]) continue; Getdep(y,x,de+l); s[x]+=s[y]; } } int calc(int x,int de) { int an=0; all=0; Getdep(x,0,de); sort(dep+1,dep+1+all); for (int l=1,r=all;l<r;) if (dep[l]+dep[r]<=k) an+=r-l++; else r--; return an; } void Solve(int x) { ans+=calc(x,0); done[x]=true; for (int i=h[x];i;i=e[i].ne) { int y=e[i].y; if (done[y]) continue; ans-=calc(y,e[i].l); size=f[0]=s[y]; Getroot(y,root=0); Solve(root); } } int main() { while (scanf("%d%d",&n,&k)==2) { if (n==k&&n==0) break; tot=0; for (int i=1;i<=n;i++) h[i]=0,done[i]=false; for (int i=1;i<n;i++) { int x,y,l; scanf("%d%d%d",&x,&y,&l); Addedge(x,y,l); Addedge(y,x,l); } ans=0; f[0]=size=n; Getroot(1,root=0); Solve(root); printf("%d ",ans); } return 0; }
感悟:
1.TLE是由于Solve(root)。写成Solve(y)了。。
2.点分治的关键是要知道路径分经过根结点和不经过根结点,由此找到递归方法。