zoukankan      html  css  js  c++  java
  • codeforces Round #259(div2) C解题报告

    C. Little Pony and Expected Maximum
    time limit per test
     1 second
    memory limit per test
     256 megabytes
    input
     standard input
    output
     standard output

    Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter Shy. But she kept losing. Having returned to the castle, Twilight Sparkle became interested in the dice that were used in the game.

    The dice has m faces: the first face of the dice contains a dot, the second one contains two dots, and so on, the m-th face contains mdots. Twilight Sparkle is sure that when the dice is tossed, each face appears with probability . Also she knows that each toss is independent from others. Help her to calculate the expected maximum number of dots she could get after tossing the dice n times.

    Input

    A single line contains two integers m and n (1 ≤ m, n ≤ 105).

    Output

    Output a single real number corresponding to the expected maximum. The answer will be considered correct if its relative or absolute error doesn't exceed 10  - 4.

    Sample test(s)
    input
    6 1
    
    output
    3.500000000000
    
    input
    6 3
    
    output
    4.958333333333
    
    input
    2 2
    
    output
    1.750000000000
    
    Note

    Consider the third test example. If you've made two tosses:

    1. You can get 1 in the first toss, and 2 in the second. Maximum equals to 2.
    2. You can get 1 in the first toss, and 1 in the second. Maximum equals to 1.
    3. You can get 2 in the first toss, and 1 in the second. Maximum equals to 2.
    4. You can get 2 in the first toss, and 2 in the second. Maximum equals to 2.

    The probability of each outcome is 0.25, that is expectation equals to:

    You can read about expectation using the following link: http://en.wikipedia.org/wiki/Expected_value

    题目大意:

    一个m个面的骰子。抛掷n次,求这n次里最大值的期望是多少。

    解法:

    数学题,有m个面的骰子。抛n次,那么总共的情况就有m^n。

    我们从m=1開始推起。

    m = 1, 仅仅有一种情况。

    m = 2。新增了2^n-1^n种情况。这些新增的情况里面。最大值均是 2,

    m = 3,新增了3^n-2^n种情况。这些新增的情况里面,最大值均是 3。

    我们就能够推出数学期望公式:  ans = 1/(m^n) * [1 + (2^n-1^n)*2 + (3^n-2^n)*3 .... + (m^n - (m-1)^n)*m]

    但m^n太大,我们得改变一下式子。 ans = (1/m)^n - (0/m)^n + [(2/m)^n - (1/m)^n] * 2 ...... + [(m/m)^n - ((m-1)/m)^n] * m。

    代码:

    #include <cstdio>
    #include <cmath>
    
    using namespace std;
    
    double n, m, ans;
    
    int main() {
    	scanf("%lf%lf", &m, &n);
    
    	ans = pow(1.0/m, n);
    	for (int i = 2; i <= m; i++)
    		ans += (pow(i/m, n) - pow((i-1)/m, n)) * i;
    	printf("%lf", ans);
    }

  • 相关阅读:
    Multi-Sensor, Multi- Network Positioning
    基于智能手机的3D地图导航
    2010上海世博会三维导航地图
    hdu 5452(树链刨分)
    蓝桥杯危险系数
    蓝桥杯横向打印二叉树(中序+先序遍历)
    蓝桥杯幸运数(线段树)
    hdu 5185(DP)
    2014江西理工大学C语言程序设计竞赛高级组题解
    uva 12730(期望经典)
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/5401907.html
Copyright © 2011-2022 走看看