题解:离散中的“最小生成树(最优树)”。
#include <bits/stdc++.h>
using namespace std;
void qusort(int l, int r, int a[])
{
int x = a[l];
int i = l, j = r;
if(i >= j)
return ;
while(i < j)
{
while(i < j && a[j] >= x)
j --;
a[i] = a[j];
while(i < j && a[j] <= x)
i ++;
a[j] = a[i];
}
a[i] = x;
qusort(l,i-1,a);
qusort(i+1,r,a);
}
int main()
{
char s[1000];
int t[500];
int q[1000];
while(~scanf("%s", s))
{
int sum1 = 0;
int sum2 = 0;
memset(t,0,sizeof(t));
int len = strlen(s);
sum1 = 8 * len;
for(int i = 0; i < len; i ++)
t[s[i]] ++;
int top = 0;
int rear = 0;
for(int i = 0; i < 500; i ++)
{
if(t[i] != 0)
q[top ++] = t[i];
}
qusort(0,top-1,q);
while(top != rear)
{
int x1 = q[rear ++];
if(top != rear)
{
int x2 = q[rear ++];
sum2 = sum2 + (x1 + x2);
q[top ++] = x1 + x2;
qusort(rear,top-1,q);
}
}
printf("%d %d %.1lf
", sum1, sum2, 1.0 * sum1 / sum2);
}
return 0;
}