zoukankan      html  css  js  c++  java
  • Break Standard Weight (ZOJ 3706)

    Problem

    The balance was the first mass measuring instrument invented. In its traditional form, it consists of a pivoted horizontal lever of equal length arms, called the beam, with a weighing pan, also called scale, suspended from each arm (which is the origin of the originally plural term "scales" for a weighing instrument). The unknown mass is placed in one pan, and standard masses are added to this or the other pan until the beam is as close to equilibrium as possible. The standard weights used with balances are usually labeled in mass units, which are positive integers.

    With some standard weights, we can measure several special masses object exactly, whose weight are also positive integers in mass units. For example, with two standard weights 1 and 5, we can measure the object with mass 145 or 6 exactly.

    In the beginning of this problem, there are 2 standard weights, which masses are xand y. You have to choose a standard weight to break it into 2 parts, whose weights are also positive integers in mass units. We assume that there is no mass lost. For example, the origin standard weights are 4 and 9, if you break the second one into 4and 5, you could measure 7 special masses, which are 1, 3, 4, 5, 8, 9, 13. While if you break the first one into 1 and 3, you could measure 13 special masses, which are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13! Your task is to find out the maximum number of possible special masses.


    Input

    There are multiple test cases. The first line of input is an integer T < 500 indicating the number of test cases. Each test case contains 2 integers x and y. 2 ≤ xy ≤ 100


    Output

    For each test case, output the maximum number of possible special masses.


    Sample Input

    2
    4 9
    10 10
    

    Sample Output

    13
    9

    题解:直接枚举暴力所有情况,比较那种拆法多就可以了。

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    int a[520], vis[505] = {0};
    int f(int a, int b, int c)
    {
        memset(vis, 0, sizeof(vis));
        int x = a;
        int ans = 0;
    
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
         x = b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
         x = c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
         x = a + b + c;
    
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a + b -c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - b +c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - b -c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = -a + b +c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = -a + b -c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = -a - b +c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
    
        x = a + b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = b - a;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
    
        x = c + b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = c - b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = b - c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
    
        x = a + c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = c - a;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        return ans;
    
    }
    int main()
    {
        int t,i,n,ans,m,j, xx = 0;
        while(scanf("%d", &t) != EOF)
        {
            while(t--)
            {
                xx = 0;
                scanf("%d %d", &n, &m);
                for(i = 1; i <= n/2; i++)
                {
                    ans = f(i, n - i, m);
                    xx = max(ans, xx);
                }
                for(i = 1; i <= m/2; i++)
                {
                    ans = f(i, m - i, n);
                    xx = max(ans, xx);
                }
                printf("%d
    ", xx);
            }
        }
        return 0;
    }
  • 相关阅读:
    3D有向包围盒与球体碰撞的算法
    搞笑段子,纪念我那逝去已久的大学生活
    [22] 计算几何图形包围盒与包围球的算法
    [21] Mesh法线的生成算法
    [20] 鼓状物(Drum)图形的生成算法
    [19] 半球形(Hemisphere)图形的生成算法
    [18] 螺旋楼梯(Spiral Stairs)图形的生成算法
    MySQL中MyISAM与InnoDB区别及选择,mysql添加外键
    在sublime3中docblockr插件配置apidoc接口文档注释模板
    sublime3 docblocker插件定制自己的注释,配置步骤
  • 原文地址:https://www.cnblogs.com/lcchy/p/10139630.html
Copyright © 2011-2022 走看看