zoukankan      html  css  js  c++  java
  • Break Standard Weight (ZOJ 3706)

    Problem

    The balance was the first mass measuring instrument invented. In its traditional form, it consists of a pivoted horizontal lever of equal length arms, called the beam, with a weighing pan, also called scale, suspended from each arm (which is the origin of the originally plural term "scales" for a weighing instrument). The unknown mass is placed in one pan, and standard masses are added to this or the other pan until the beam is as close to equilibrium as possible. The standard weights used with balances are usually labeled in mass units, which are positive integers.

    With some standard weights, we can measure several special masses object exactly, whose weight are also positive integers in mass units. For example, with two standard weights 1 and 5, we can measure the object with mass 145 or 6 exactly.

    In the beginning of this problem, there are 2 standard weights, which masses are xand y. You have to choose a standard weight to break it into 2 parts, whose weights are also positive integers in mass units. We assume that there is no mass lost. For example, the origin standard weights are 4 and 9, if you break the second one into 4and 5, you could measure 7 special masses, which are 1, 3, 4, 5, 8, 9, 13. While if you break the first one into 1 and 3, you could measure 13 special masses, which are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13! Your task is to find out the maximum number of possible special masses.


    Input

    There are multiple test cases. The first line of input is an integer T < 500 indicating the number of test cases. Each test case contains 2 integers x and y. 2 ≤ xy ≤ 100


    Output

    For each test case, output the maximum number of possible special masses.


    Sample Input

    2
    4 9
    10 10
    

    Sample Output

    13
    9

    题解:直接枚举暴力所有情况,比较那种拆法多就可以了。

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    int a[520], vis[505] = {0};
    int f(int a, int b, int c)
    {
        memset(vis, 0, sizeof(vis));
        int x = a;
        int ans = 0;
    
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
         x = b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
         x = c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
         x = a + b + c;
    
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a + b -c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - b +c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - b -c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = -a + b +c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = -a + b -c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = -a - b +c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
    
        x = a + b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = b - a;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
    
        x = c + b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = c - b;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = b - c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
    
        x = a + c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = a - c;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        x = c - a;
        if(x > 0 && vis[x] == 0){vis[x] = 1;ans++;}
        return ans;
    
    }
    int main()
    {
        int t,i,n,ans,m,j, xx = 0;
        while(scanf("%d", &t) != EOF)
        {
            while(t--)
            {
                xx = 0;
                scanf("%d %d", &n, &m);
                for(i = 1; i <= n/2; i++)
                {
                    ans = f(i, n - i, m);
                    xx = max(ans, xx);
                }
                for(i = 1; i <= m/2; i++)
                {
                    ans = f(i, m - i, n);
                    xx = max(ans, xx);
                }
                printf("%d
    ", xx);
            }
        }
        return 0;
    }
  • 相关阅读:
    Linux速成(二)
    Linux速成(一)
    突如其来的有赞电话面试!
    mark一下岗位
    游戏道具上下架设计
    ET框架学习-ECS组件式编程的基本思想之于UNITY
    一个类似与地平线中的车漆画板制作
    unity用刚体做玩家移动和玩家看向鼠标点
    C#简单的消除注释
    拉格朗日差值法, 快速排序.
  • 原文地址:https://www.cnblogs.com/lcchy/p/10139630.html
Copyright © 2011-2022 走看看