zoukankan      html  css  js  c++  java
  • BZOJ 2956 模积和

    题目链接:模积和

      这种有模运算的题一般都要把取模运算给去掉,改成除法取下整的模式。即(amod b=a-lfloor frac{a}{b}  floor b)

      然后我们先把(i=j)的也统计进答案,最后再减去即可。接下来就是推式子时间((n le m)):

    egin{aligned}
    &sum_{i=1}^nsum_{j=1}^m(n mod i)(m mod j) \
    =&sum_{i=1}^n(n mod i)sum_{j=1}^m(m mod j) \
    =&sum_{i=1}^n(n-ilfloor frac{n}{i} floor)sum_{j=1}^m(m-jlfloor frac{m}{j} floor) \
    =&(n^2-sum_{i=1}^nilfloor frac{n}{i} floor)(m^2-sum_{i=1}^milfloor frac{m}{i} floor)
    end{aligned}

    egin{aligned}
    &sum_{i=1}^n(n mod i)(m mod i) \
    =&sum_{i=1}^n(n-ilfloor frac{n}{i} floor)(m-ilfloor frac{m}{i} floor) \
    =&n^2m-msum_{i=1}^nilfloor frac{n}{i} floor-nsum_{i=1}^nilfloor frac{m}{i} floor+sum_{i=1}^nlfloor frac{n}{i} floorlfloor frac{m}{i} floor i^2
    end{aligned}

      然后分块计算即可。上下两个式子一减就是答案。

      下面贴代码:

    #include<cstdio>
    #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
    #define mod 19940417
    #define llg long long
    #define min(a,b) (a<b?a:b)
    
    const int n6=7776;
    int n,m,a[3];
    
    llg S(int x){return (1ll*x*(x+1)>>1)%mod;}
    llg S2(int x){
    	a[0]=x,a[1]=x+1,a[2]=2*x+1;
    	for(int i=0;i<3;i++) if(a[i]%2==0){a[i]/=2;break;}
    	for(int i=0;i<3;i++) if(a[i]%3==0){a[i]/=3;break;}
    	return 1ll*a[0]*a[1]%mod*a[2]%mod;
    }
    
    llg work(int x,int y){
    	llg now=0;
    	for(int i=1,nt;i<=x;i=nt+1)
    		nt=min(y/(y/i),x),now+=1ll*(y/i)*(S(nt)-S(i-1));
    	return now%mod;
    }
    
    int main(){
    	File("a");
    	scanf("%d %d",&n,&m);
    	if(n>m) n^=m^=n^=m;
    	llg s1=work(n,n),ans;
    	ans=(1ll*n*n-s1)%mod*(1ll*m*m%mod-work(m,m))%mod;
    	ans+=s1*m+work(n,m)*n; ans%=mod;
    	ans-=1ll*n*n%mod*m; ans%=mod;
    	for(int i=1,nt;i<=n;i=nt+1){
    		nt=min(n/(n/i),m/(m/i));
    		ans-=(S2(nt)-S2(i-1))*(m/i)%mod*(n/i);
    		ans%=mod;
    	}
    	printf("%lld",(ans+mod)%mod);
    	return 0;
    }
    
  • 相关阅读:
    最长回文子序列---DP
    最长回文子串(暴力破解)
    两数相加
    多数元素
    MPI集群搭建
    字符串截取子串(Java substring , indexOf)
    JDK和环境配置,eclipse安装与使用
    ubantu上面 NFS服务器安装
    Django中间件的应用
    Django的url路由系统简介
  • 原文地址:https://www.cnblogs.com/lcf-2000/p/6811864.html
Copyright © 2011-2022 走看看