zoukankan      html  css  js  c++  java
  • Pydantic使用

    Pydantic可以在代码运行时提供类型提示, 数据校验失败时提供友好的错误提示, 使用Python的类型注解来进行数据校验和settings管理

    一般使用

    from datetime import datetime
    from typing import List
    from typing import Optional
    
    from pydantic import BaseModel
    
    
    # 1 定义模型
    class User(BaseModel):
        id: int  # 必须字段
        name: str = "John Snow"  # 有默认值,选填字段
        signup_ts: Optional[datetime] = None
        friends: List[int] = []  # 列表中元素是int类型或者可以直接转换成int类型
    
    
    external_data = {
        "id": "123",
        "signup_ts": "2020-12-22 12:22",
        "friends": [1, 2, "3"],  # "3"是可以int("3")的
    }
    # 2 检验数据
    user = User(**external_data)
    # 3 访问数据
    print(user.id, user.friends)  # 实例化后调用属性
    print(repr(user.signup_ts))
    # .dict 方法, 返回数据字典
    print(user.dict())
    
    

    校验失败处理

    假如数据检验不通过, 会抛出pydantic.ValidationError

    from datetime import datetime
    
    from typing import List
    from typing import Optional
    
    from pydantic import BaseModel, ValidationError
    
    
    class User(BaseModel):
        id: int  # 必须字段
        name: str = "John Snow"  # 有默认值,选填字段
        signup_ts: Optional[datetime] = None
        friends: List[int] = []  # 列表中元素是int类型或者可以直接转换成int类型
    
    
    external_data = {
        "id": "123",
        "signup_ts": "2020-12-22 12:22",
        "friends": [1, 2, "3"],  # "3"是可以int("3")的
    }
    
    try:
        User(id=1, signup_ts=datetime.today(), friends=[1, 2, "not number"])
    except ValidationError as e:
        print(e.json())
        """
        [
          {
            "loc": [
              "friends",
              2
            ],
            "msg": "value is not a valid integer",
            "type": "type_error.integer"
          }
        ]
        """
    
    

    模型类的的属性和方法

    from datetime import datetime
    from pathlib import Path
    from typing import List
    from typing import Optional
    
    from pydantic import BaseModel
    
    
    class User(BaseModel):
        id: int  # 必须字段
        name: str = "John Snow"  # 有默认值,选填字段
        signup_ts: Optional[datetime] = None
        friends: List[int] = []  # 列表中元素是int类型或者可以直接转换成int类型
    
    
    external_data = {
        "id": "123",
        "signup_ts": "2020-12-22 12:22",
        "friends": [1, 2, "3"],  # "3"是可以int("3")的
    }
    user = User(**external_data)
    
    # 获得已检验数据的字典数据
    print(user.dict())
    
    # 获得已检验数据的json数据
    print(user.json())
    
    # 这里是浅拷贝
    print(user.copy())
    
    # 通过对象解析
    print(User.parse_obj(external_data))
    
    # 通过字符串解析
    print(User.parse_raw('{"id": "123", "signup_ts": "2020-12-22 12:22", "friends": [1, 2, "3"]}'))
    
    path = Path('pydantic_tutorial.json')
    path.write_text('{"id": "123", "signup_ts": "2020-12-22 12:22", "friends": [1, 2, "3"]}')
    # 通过文本解析
    print(User.parse_file(path))
    
    # 获得对象 概要
    # {'title': 'User', 'type': 'object', 'properties': {'id': ...} }
    print(user.schema())
    # 获得对象 概要json
    # {'title': 'User', 'type': 'object', 'properties': {'id': ...} }
    print(user.schema_json())
    
    user_data = {"id": "error", "signup_ts": "2020-12-22 12 22", "friends": [1, 2, 3]}  # id是字符串 是错误的
    # 不检验数据直接创建模型类,不建议在construct方法中传入未经验证的数据
    print(User.construct(**user_data))
    
    # 获得所有字段
    # 定义模型类的时候,所有字段都注明类型,字段顺序就不会乱
    print(User.__fields__.keys())
    
    

    模型嵌套

    from datetime import datetime, date
    
    from typing import List
    from typing import Optional
    
    from pydantic import BaseModel
    
    
    class User(BaseModel):
        id: int  # 必须字段
        name: str = "John Snow"  # 有默认值,选填字段
        signup_ts: Optional[datetime] = None
        friends: List[int] = []  # 列表中元素是int类型或者可以直接转换成int类型
    
    
    external_data = {
        "id": "123",
        "signup_ts": "2020-12-22 12:22",
        "friends": [1, 2, "3"],  # "3"是可以int("3")的
    }
    user = User(**external_data)
    
    
    class Sound(BaseModel):
        sound: str
    
    
    class Dog(BaseModel):
        birthday: date
        weight: float = Optional[None]
        sound: List[Sound]  # 不同的狗有不同的叫声。递归模型(Recursive Models)就是指一个嵌套一个
    
    
    dogs = Dog(birthday=date.today(), weight=6.66, sound=[{"sound": "wang wang ~"}, {"sound": "ying ying ~"}])
    print(dogs.dict())
    
    

    与ORM结合

    from datetime import datetime
    
    from typing import List
    from typing import Optional
    
    from pydantic import BaseModel
    from pydantic import constr
    from sqlalchemy import Column, Integer, String
    from sqlalchemy.dialects.postgresql import ARRAY
    from sqlalchemy.ext.declarative import declarative_base
    
    Base = declarative_base()
    
    
    class CompanyOrm(Base):
        __tablename__ = 'companies'
        id = Column(Integer, primary_key=True, nullable=False)
        public_key = Column(String(20), index=True, nullable=False, unique=True)
        name = Column(String(63), unique=True)
        domains = Column(ARRAY(String(255)))
    
    
    class CompanyModel(BaseModel):
        id: int
        # constr用于约束字符串
        public_key: constr(max_length=20)
        name: constr(max_length=63)
        domains: List[constr(max_length=255)]
    
        class Config:
            orm_mode = True
    
    
    co_orm = CompanyOrm(
        id=123,
        public_key='foobar',
        name='Testing',
        domains=['example.com', 'foobar.com'],
    )
    
    print(CompanyModel.from_orm(co_orm))
    
    

    验证器

    如何使用及参数见passwords_match方法

    from pydantic import BaseModel, ValidationError, validator
    
    
    class UserModel(BaseModel):
        name: str
        username: str
        password1: str
        password2: str
    
        @validator('name')
        def name_must_contain_space(cls, v, **kwargs):
            if ' ' not in v:
                raise ValueError('must contain a space')
            return v.title()
    
        @validator('password2')
        def passwords_match(cls, v, values, **kwargs):
            """
            :param v: 当前字段的值: zxcvbn2
            :param values: 已经验证的数据: {'username': 'scolvin', 'password1': 'zxcvbn'}
            :param kwargs: {'field': ModelField(name='password2', type=str, required=True), 
                                'config': <class '__main__.Config'>}
            :return:
            """
    
            if 'password1' in values and v != values['password1']:
                raise ValueError('passwords do not match')
            return v
    
        @validator('username')
        def username_alphanumeric(cls, v):
            assert v.isalnum(), 'must be alphanumeric'
            return v
    
    
    try:
        UserModel(
            name='samuel',
            username='scolvin',
            password1='zxcvbn',
            password2='zxcvbn2',
        )
    except ValidationError as e:
        print(e)
        """
        2 validation errors for UserModel
        name
          must contain a space (type=value_error)
        password2
          passwords do not match (type=value_error)
        """
    
    

    全部字段类型

    见官方文档: Field Types

    更多其他使用方法见: pydantic-docs

    本文来自博客园,作者:403·Forbidden,转载请注明原文链接:https://www.cnblogs.com/lczmx/p/15747166.html

  • 相关阅读:
    JavaEmail的使用之邮件发送
    《将博客搬至CSDN》
    利用myqr库创建自己的二维码
    魔幻离现实仅一步之遥:细说Python的循环调用、循环引用和循环导入
    Locust做接口性能测试测时候RemoteDisconnected的解决办法(ConnectionError(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response'))))
    python定时简单爬取网页新闻存入数据库并发送邮件
    利用Python爬取京东商品的一种办法
    基于visual c++之windows核心编程代码分析(42)windows下进程的身份切换
    基于visual c++之windows核心编程代码分析(44)监测任意程序函数起始地址
    基于visual c++之windows核心编程代码分析(46)遍历数字证书
  • 原文地址:https://www.cnblogs.com/lczmx/p/15747166.html
Copyright © 2011-2022 走看看