a='我是中国人'.encode('utf-8') #3.0默认是unicode,转换成utf-8
1、导入模块:
默认是在如下目录的可以直接导入:
import sys print sys.path 结果: ['/Users/wupeiqi/PycharmProjects/calculator/p1/pp1', '/usr/local/lib/python2.7/site-packages/setuptools-15.2-py2.7.egg', '/usr/local/lib/python2.7/site-packages/distribute-0.6.28-py2.7.egg', '/usr/local/lib/python2.7/site-packages/MySQL_python-1.2.4b4-py2.7-macosx-10.10-x86_64.egg', '/usr/local/lib/python2.7/site-packages/xlutils-1.7.1-py2.7.egg', '/usr/local/lib/python2.7/site-packages/xlwt-1.0.0-py2.7.egg', '/usr/local/lib/python2.7/site-packages/xlrd-0.9.3-py2.7.egg', '/usr/local/lib/python2.7/site-packages/tornado-4.1-py2.7-macosx-10.10-x86_64.egg', '/usr/local/lib/python2.7/site-packages/backports.ssl_match_hostname-3.4.0.2-py2.7.egg', '/usr/local/lib/python2.7/site-packages/certifi-2015.4.28-py2.7.egg', '/usr/local/lib/python2.7/site-packages/pyOpenSSL-0.15.1-py2.7.egg', '/usr/local/lib/python2.7/site-packages/six-1.9.0-py2.7.egg', '/usr/local/lib/python2.7/site-packages/cryptography-0.9.1-py2.7-macosx-10.10-x86_64.egg', '/usr/local/lib/python2.7/site-packages/cffi-1.1.1-py2.7-macosx-10.10-x86_64.egg', '/usr/local/lib/python2.7/site-packages/ipaddress-1.0.7-py2.7.egg', '/usr/local/lib/python2.7/site-packages/enum34-1.0.4-py2.7.egg', '/usr/local/lib/python2.7/site-packages/pyasn1-0.1.7-py2.7.egg', '/usr/local/lib/python2.7/site-packages/idna-2.0-py2.7.egg', '/usr/local/lib/python2.7/site-packages/pycparser-2.13-py2.7.egg', '/usr/local/lib/python2.7/site-packages/Django-1.7.8-py2.7.egg', '/usr/local/lib/python2.7/site-packages/paramiko-1.10.1-py2.7.egg', '/usr/local/lib/python2.7/site-packages/gevent-1.0.2-py2.7-macosx-10.10-x86_64.egg', '/usr/local/lib/python2.7/site-packages/greenlet-0.4.7-py2.7-macosx-10.10-x86_64.egg', '/Users/wupeiqi/PycharmProjects/calculator', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python27.zip', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python2.7', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python2.7/plat-darwin', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python2.7/plat-mac', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python2.7/plat-mac/lib-scriptpackages', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-tk', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-old', '/usr/local/Cellar/python/2.7.9/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-dynload', '/usr/local/lib/python2.7/site-packages', '/Library/Python/2.7/site-packages'] 如果sys.path路径列表没有你想要的路径,可以通过 sys.path.append('路径') 添加。
导入模块其实就是告诉Python解释器去解释那个py文件
- 导入一个py文件,解释器解释该py文件
- 导入一个包,解释器解释该包下的 __init__.py 文件 【py2.7】
那么问题来了,导入模块时是根据那个路径作为基准来进行的呢?即:sys.path
import module from module.xx.xx import xx from module.xx.xx import xx as rename from module.xx.xx import *
2、导入自定义模块:
import sys import os project_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(project_path)
自己写个模块
python tab补全模块
for mac
#!/usr/bin/env python # python startup file import sys import readline import rlcompleter import atexit import os # tab completion readline.parse_and_bind('tab: complete') # history file histfile = os.path.join(os.environ['HOME'], '.pythonhistory') try: readline.read_history_file(histfile) except IOError: pass atexit.register(readline.write_history_file, histfile) del os, histfile, readline, rlcompleter
写完保存后就可以使用了
localhost:~ jieli$ python Python 2.7.10 (default, Oct 23 2015, 18:05:06) [GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.5)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import tab
你会发现,上面自己写的tab.py模块只能在当前目录下导入,如果想在系统的何何一个地方都使用怎么办呢? 此时你就要把这个tab.py放到python全局环境变量目录里啦,基本一般都放在一个叫 Python/2.7/site-packages 目录下,这个目录在不同的OS里放的位置不一样,用 print(sys.path) 可以查看python环境变量列表。
自定义模块 和开源模块的使用参考 http://www.cnblogs.com/wupeiqi/articles/4963027.html
3、常用内置模块整理:
Getpass模块:
输入密码时,如果想要不可见,需要利用getpass 模块中的 getpass方法,即:
#!/usr/bin/env python # -*- coding: utf-8 -*- import getpass # 将用户输入的内容赋值给 name 变量 pwd = getpass.getpass("请输入密码:") # 打印输入的内容 print(pwd)
3.1 SYS模块:用于提供对Python解释器相关的操作:
sys.argv 命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(0)
sys.version 获取Python解释程序的版本信息
sys.maxint 最大的Int值
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称
sys.stdin 输入相关
sys.stdout 输出相关
sys.stderror 错误相关
例子:进度条:
import sys import time def view_bar(num, total): rate = float(num) / float(total) rate_num = int(rate * 100) r = ' %d%%' % (rate_num, ) sys.stdout.write(r) sys.stdout.flush() if __name__ == '__main__': for i in range(0, 100): time.sleep(0.1) view_bar(i, 100)
3.2 OS模块:用于提供系统级别的操作:
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd os.curdir 返回当前目录: ('.') os.pardir 获取当前目录的父目录字符串名:('..') os.makedirs('dir1/dir2') 可生成多层递归目录 os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推 os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印 os.remove() 删除一个文件 os.rename("oldname","new") 重命名文件/目录 os.stat('path/filename') 获取文件/目录信息 os.sep 操作系统特定的路径分隔符,win下为"\",Linux下为"/" os.linesep 当前平台使用的行终止符,win下为" ",Linux下为" " os.pathsep 用于分割文件路径的字符串 os.name 字符串指示当前使用平台。win->'nt'; Linux->'posix' os.system("bash command") 运行shell命令,直接显示 os.environ 获取系统环境变量 os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或结尾,那么就会返回空值。即os.path.split(path)的第二个元素 os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False os.path.isabs(path) 如果path是绝对路径,返回True os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略 os.path.getatime(path) 返回path所指向的文件或者目录的最后存取时间 os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间
3.3 time&datetime 模块
#_*_coding:utf-8_*_ __author__ = 'Alex Li' import time # print(time.clock()) #返回处理器时间,3.3开始已废弃 , 改成了time.process_time()测量处理器运算时间,不包括sleep时间,不稳定,mac上测不出来 # print(time.altzone) #返回与utc时间的时间差,以秒计算 # print(time.asctime()) #返回时间格式"Fri Aug 19 11:14:16 2016", # print(time.localtime()) #返回本地时间 的struct time对象格式 # print(time.gmtime(time.time()-800000)) #返回utc时间的struc时间对象格式 # print(time.asctime(time.localtime())) #返回时间格式"Fri Aug 19 11:14:16 2016", #print(time.ctime()) #返回Fri Aug 19 12:38:29 2016 格式, 同上 # 日期字符串 转成 时间戳 # string_2_struct = time.strptime("2016/05/22","%Y/%m/%d") #将 日期字符串 转成 struct时间对象格式 # print(string_2_struct) # # # struct_2_stamp = time.mktime(string_2_struct) #将struct时间对象转成时间戳 # print(struct_2_stamp) #将时间戳转为字符串格式 # print(time.gmtime(time.time()-86640)) #将utc时间戳转换成struct_time格式 # print(time.strftime("%Y-%m-%d %H:%M:%S",time.gmtime()) ) #将utc struct_time格式转成指定的字符串格式 #时间加减 import datetime # print(datetime.datetime.now()) #返回 2016-08-19 12:47:03.941925 #print(datetime.date.fromtimestamp(time.time()) ) # 时间戳直接转成日期格式 2016-08-19 # print(datetime.datetime.now() ) # print(datetime.datetime.now() + datetime.timedelta(3)) #当前时间+3天 # print(datetime.datetime.now() + datetime.timedelta(-3)) #当前时间-3天 # print(datetime.datetime.now() + datetime.timedelta(hours=3)) #当前时间+3小时 # print(datetime.datetime.now() + datetime.timedelta(minutes=30)) #当前时间+30分 # # c_time = datetime.datetime.now() # print(c_time.replace(minute=3,hour=2)) #时间替换
Directive | Meaning | Notes |
---|---|---|
%a |
Locale’s abbreviated weekday name. | |
%A |
Locale’s full weekday name. | |
%b |
Locale’s abbreviated month name. | |
%B |
Locale’s full month name. | |
%c |
Locale’s appropriate date and time representation. | |
%d |
Day of the month as a decimal number [01,31]. | |
%H |
Hour (24-hour clock) as a decimal number [00,23]. | |
%I |
Hour (12-hour clock) as a decimal number [01,12]. | |
%j |
Day of the year as a decimal number [001,366]. | |
%m |
Month as a decimal number [01,12]. | |
%M |
Minute as a decimal number [00,59]. | |
%p |
Locale’s equivalent of either AM or PM. | (1) |
%S |
Second as a decimal number [00,61]. | (2) |
%U |
Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Sunday are considered to be in week 0. | (3) |
%w |
Weekday as a decimal number [0(Sunday),6]. | |
%W |
Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Monday are considered to be in week 0. | (3) |
%x |
Locale’s appropriate date representation. | |
%X |
Locale’s appropriate time representation. | |
%y |
Year without century as a decimal number [00,99]. | |
%Y |
Year with century as a decimal number. | |
%z |
Time zone offset indicating a positive or negative time difference from UTC/GMT of the form +HHMM or -HHMM, where H represents decimal hour digits and M represents decimal minute digits [-23:59, +23:59]. | |
%Z |
Time zone name (no characters if no time zone exists). | |
%% |
A literal '%' character. |
3.4 datetime模块 可以算天和秒级计算,多用于时间运算
两个模块常用实例:
import time import datetime print(time.altzone/3600) print(time.asctime()) t=time.localtime() #本地时间 t=time.localtime(time.time() + 3600*3) #加3小时,不能进行天数运算 print(t.tm_year,t.tm_yday) #year to day =ytd,mtd=month to day print(time.time()) #打印时间戳 从1970到现在 print(time.gmtime()) #utc time print(time.ctime()) #返回当前时间 print(time.strptime('2016-11-11 23:20','%Y-%m-%d %H:%M')) #字符串转成时间对象 t2 = time.strptime('2016-11-11 23:20','%Y-%m-%d %H:%M') t2_stamp= time.mktime(t2) print(time.mktime(t2)) #转换成时间戳再计算 t3 = time.localtime(t2_stamp) #stamp to time struct t3_str = time.strftime('%Y_%m_%d_%H_%M.log',t3) print(t3_str) print('datetime'.center(60,'_')) print(datetime.datetime.now()) #打印当前时间 print(datetime.datetime.fromtimestamp(time.time())) print(datetime.datetime.now() + datetime.timedelta(days=3)) #当前日期加3天 print(datetime.datetime.now() + datetime.timedelta(hours=3)) #加3小时 now=datetime.datetime.now() print(now.replace(month=1,day=1))
3.5 json & pickle 模块
用于序列化的两个模块
- json,用于字符串 和 python数据类型间进行转换
- pickle,用于python特有的类型 和 python的数据类型间进行转换
Json模块提供了四个功能:dumps、dump、loads、load
pickle模块提供了四个功能:dumps、dump、loads、load
3.6 shelve 模块
shelve模块是一个简单的k,v将内存数据通过文件持久化的模块,可以持久化任何pickle可支持的python数据格式
import shelve d = shelve.open('shelve_test') #打开一个文件 class Test(object): def __init__(self,n): self.n = n t = Test(123) t2 = Test(123334) name = ["alex","rain","test"] d["test"] = name #持久化列表 d["t1"] = t #持久化类 d["t2"] = t2 d.close()
3.4 hashlib:
用于加密相关的操作,代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法
例子:
import hashlib # ######## md5 ######## hash = hashlib.md5() # help(hash.update) hash.update(bytes('admin', encoding='utf-8')) print(hash.hexdigest()) print(hash.digest()) ######## sha1 ######## hash = hashlib.sha1() hash.update(bytes('admin', encoding='utf-8')) print(hash.hexdigest()) # ######## sha256 ######## hash = hashlib.sha256() hash.update(bytes('admin', encoding='utf-8')) print(hash.hexdigest()) # ######## sha384 ######## hash = hashlib.sha384() hash.update(bytes('admin', encoding='utf-8')) print(hash.hexdigest()) # ######## sha512 ######## hash = hashlib.sha512() hash.update(bytes('admin', encoding='utf-8')) print(hash.hexdigest())
以上加密算法虽然依然非常厉害,但时候存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。
import hashlib # ######## md5 ######## hash = hashlib.md5(bytes('898oaFs09f',encoding="utf-8")) hash.update(bytes('admin',encoding="utf-8")) print(hash.hexdigest())
更多关于md5,sha1,sha256等介绍的文章看这里https://www.tbs-certificates.co.uk/FAQ/en/sha256.html
同样的对象,md5后结果一样
python内置还有一个 hmac 模块,它内部对我们创建 key 和 内容 进行进一步的处理然后再加密
import hmac h = hmac.new(bytes('898oaFs09f',encoding="utf-8")) h.update(bytes('admin',encoding="utf-8")) print(h.hexdigest())
import hmac h_obj=hmac.new(b'salt',b'hello') #加密消息 print(h_obj.hexdigest()) /usr/bin/python3.5 /home/ld/mytest/day3/test_hashlib.py 3a2484b4f0df4f4157d069598a334b31
3.4 RANDOM模块:随机数
import random print(random.random()) print(random.randint(1, 2)) print(random.randrange(1, 10))
print(random.sample(range(100),5)) #从范围100中随机选取5个数字
import random import string #string模块 str_source=string.ascii_letters + string.digits print(random.sample(str_source,5)) #从上面的字符中随机选5个
import random checkcode = '' for i in range(4): current = random.randrange(0,4) if current != i: temp = chr(random.randint(65,90)) else: temp = random.randint(0,9) checkcode += str(temp) print checkcode
例子:
import random checkcode = '' for i in range(4): current = random.randrange(0,4) if current != i: temp = chr(random.randint(65,90)) else: temp = random.randint(0,9) checkcode += str(temp) print checkcode
3.5 re
python中re模块提供了正则表达式相关操作
字符:
. 匹配除换行符以外的任意字符
w 匹配字母或数字或下划线或汉字
s 匹配任意的空白符
d 匹配数字
匹配单词的开始或结束
^ 匹配字符串的开始
$ 匹配字符串的结束
次数:
* 重复零次或更多次
+ 重复一次或更多次
? 重复零次或一次
{n} 重复n次
{n,} 重复n次或更多次
{n,m} 重复n到m次
常用正则表达式符号
'.' 默认匹配除 之外的任意一个字符,若指定flag DOTALL,则匹配任意字符,包括换行 '^' 匹配字符开头,若指定flags MULTILINE,这种也可以匹配上(r"^a"," abc eee",flags=re.MULTILINE) '$' 匹配字符结尾,或e.search("foo$","bfoo sdfsf",flags=re.MULTILINE).group()也可以 '*' 匹配*号前的字符0次或多次,re.findall("ab*","cabb3abcbbac") 结果为['abb', 'ab', 'a'] '+' 匹配前一个字符1次或多次,re.findall("ab+","ab+cd+abb+bba") 结果['ab', 'abb'] '?' 匹配前一个字符1次或0次 '{m}' 匹配前一个字符m次 '{n,m}' 匹配前一个字符n到m次,re.findall("ab{1,3}","abb abc abbcbbb") 结果'abb', 'ab', 'abb'] '|' 匹配|左或|右的字符,re.search("abc|ABC","ABCBabcCD").group() 结果'ABC' '(...)' 分组匹配,re.search("(abc){2}a(123|456)c", "abcabca456c").group() 结果 abcabca456c 'A' 只从字符开头匹配,re.search("Aabc","alexabc") 是匹配不到的 '' 匹配字符结尾,同$ 'd' 匹配数字0-9 'D' 匹配非数字 'w' 匹配[A-Za-z0-9] 'W' 匹配非[A-Za-z0-9] 's' 匹配空白字符、 、 、 , re.search("s+","ab c1 3").group() 结果 ' ' '(?P<name>...)' 分组匹配 re.search("(?P<province>[0-9]{4})(?P<city>[0-9]{2})(?P<birthday>[0-9]{4})","371481199306143242").groupdict("city") 结果{'province': '3714', 'city': '81', 'birthday': '1993'}
身份证分组实例:
>>> re.search("(d{2})(d{2})(d{4})","371481199206143421 name alex").groups() ('37', '14', '8119')
实例:
>>> import re >>> re.findall("D+","ab3c4sdfd45634sfsd26ds6") ['ab', 'c', 'sdfd', 'sfsd', 'ds'] >>> re.findall("d+","ab3c4sdfd45634sfsd26ds6") ['3', '4', '45634', '26', '6'] >>> re.split("d+","ab3c4sdfd45634sfsd26ds6") ['ab', 'c', 'sdfd', 'sfsd', 'ds', ''] >>> re.sub("d+","|","ab3c4sdfd45634sfsd26ds6") 'ab|c|sdfd|sfsd|ds|'
反斜杠的困扰
与大多数编程语言相同,正则表达式里使用""作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\"表示。同样,匹配一个数字的"\d"可以写成r"d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。
仅需轻轻知道的几个匹配模式
re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同) M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图) S(DOTALL): 点任意匹配模式,改变'.'的行为
match
# match,从起始位置开始匹配,匹配成功返回一个对象,未匹配成功返回None match(pattern, string, flags=0) # pattern: 正则模型 # string : 要匹配的字符串 # falgs : 匹配模式 X VERBOSE Ignore whitespace and comments for nicer looking RE's. I IGNORECASE Perform case-insensitive matching. M MULTILINE "^" matches the beginning of lines (after a newline) as well as the string. "$" matches the end of lines (before a newline) as well as the end of the string. S DOTALL "." matches any character at all, including the newline. A ASCII For string patterns, make w, W, , B, d, D match the corresponding ASCII character categories (rather than the whole Unicode categories, which is the default). For bytes patterns, this flag is the only available behaviour and needn't be specified. L LOCALE Make w, W, , B, dependent on the current locale. U UNICODE For compatibility only. Ignored for string patterns (it is the default), and forbidden for bytes patterns.
demo:
# 无分组 r = re.match("hw+", origin) print(r.group()) # 获取匹配到的所有结果 print(r.groups()) # 获取模型中匹配到的分组结果 print(r.groupdict()) # 获取模型中匹配到的分组结果 # 有分组 # 为何要有分组?提取匹配成功的指定内容(先匹配成功全部正则,再匹配成功的局部内容提取出来) r = re.match("h(w+).*(?P<name>d)$", origin) print(r.group()) # 获取匹配到的所有结果 print(r.groups()) # 获取模型中匹配到的分组结果 print(r.groupdict()) # 获取模型中匹配到的分组中所有执行了key的组
search:
# search,浏览整个字符串去匹配第一个,未匹配成功返回None
# search(pattern, string, flags=0)
# 无分组 r = re.search("aw+", origin) print(r.group()) # 获取匹配到的所有结果 print(r.groups()) # 获取模型中匹配到的分组结果 print(r.groupdict()) # 获取模型中匹配到的分组结果 # 有分组 r = re.search("a(w+).*(?P<name>d)$", origin) print(r.group()) # 获取匹配到的所有结果 print(r.groups()) # 获取模型中匹配到的分组结果 print(r.groupdict()) # 获取模型中匹配到的分组中所有执行了key的组
>>> re.search("d{1,3}.d{1,3}.d{1,3}.d{1,3}","inet 地址:192.168.12.55 广播:192.168.12.255").group() '192.168.12.55' >>> print(re.search("(d{1,3}.){3}d{1,3}", "inet 地址:192.168.12.55 广播:192.168.12.255")) <_sre.SRE_Match object; span=(8, 21), match='192.168.12.55'> >>> print(re.search("(d{1,3}.){3}d{1,3}", "inet 地址:192.168.12.55 广播:192.168.12.255").group(0)) 192.168.12.55
findall:
# findall,获取非重复的匹配列表;如果有一个组则以列表形式返回,且每一个匹配均是字符串;如果模型中有多个组,则以列表形式返回,且每一个匹配均是元祖;
# 空的匹配也会包含在结果中
#findall(pattern, string, flags=0)
# 无分组 r = re.findall("aw+",origin) print(r) # 有分组 origin = "hello alex bcd abcd lge acd 19" r = re.findall("a((w*)c)(d)", origin) print(r)
sub:
# sub,替换匹配成功的指定位置字符串
sub(pattern, repl, string, count
=
0
, flags
=
0
)
# pattern: 正则模型
# repl : 要替换的字符串或可执行对象
# string : 要匹配的字符串
# count : 指定匹配个数
# flags : 匹配模式
# 与分组无关 origin = "hello alex bcd alex lge alex acd 19" r = re.sub("aw+", "999", origin, 2) print(r)
split:
# split,根据正则匹配分割字符串
split(pattern, string, maxsplit
=
0
, flags
=
0
)
# pattern: 正则模型
# string : 要匹配的字符串
# maxsplit:指定分割个数
# flags : 匹配模式
# 无分组 origin = "hello alex bcd alex lge alex acd 19" r = re.split("alex", origin, 1) print(r) # 有分组 origin = "hello alex bcd alex lge alex acd 19" r1 = re.split("(alex)", origin, 1) print(r1) r2 = re.split("(al(ex))", origin, 1) print(r2)
常用正则表达式:
IP: ^(25[0-5]|2[0-4]d|[0-1]?d?d)(.(25[0-5]|2[0-4]d|[0-1]?d?d)){3}$ 手机号: ^1[3|4|5|8][0-9]d{8}$ 邮箱: [a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(.[a-zA-Z0-9_-]+)+
4、序列化:
Python中用于序列化的两个模块
- json 用于【字符串】和 【python基本数据类型】 间进行转换
- pickle 用于【python特有的类型】 和 【python基本数据类型】间进行转换
Json模块提供了四个功能:dumps、dump、loads、load
pickle模块提供了四个功能:dumps、dump、loads、load.
demo:
import pickle data = {'k1':123,'k2':'hello'} #pickle.dumps 将数据通过特殊的形式转换为只有python语言认识的字符串 p_str = pickle.dumps(data) #pickle.dump将通过特殊的形式转换为只有Python语言认识的字符串,并写入文件 with open('d:/result.pk','w') as fp: picke.dump(data,fp) import json #json.dumps将通过特殊的形式转换为所有程序 语言都认识的字符串 j_str=json.dumps(data) print j_str #json.dumps将通过特殊的形式转换为所有程序 语言都认识的字符串并写入文件 with open('d:/result.json','w') as fp: json.dump(data,fp)
5.configparser:configparser用于处理特定格式的文件,其本质上是利用open来操作文件。
# 注释1 ; 注释2 [section1] # 节点 k1 = v1 # 值 k2:v2 # 值 [section2] # 节点 k1 = v1 # 值
自己生成特定格式文件当如何做?
import configparser config = configparser.ConfigParser() config["DEFAULT"] = {'ServerAliveInterval': '45', 'Compression': 'yes', 'CompressionLevel': '9'} config['bitbucket.org'] = {} config['bitbucket.org']['User'] = 'hg' config['topsecret.server.com'] = {} topsecret = config['topsecret.server.com'] topsecret['Host Port'] = '50022' # mutates the parser topsecret['ForwardX11'] = 'no' # same here config['DEFAULT']['ForwardX11'] = 'yes' with open('example.ini', 'w') as configfile: config.write(configfile)
写完了还可以再读出来哈。
>>> import configparser >>> config = configparser.ConfigParser() >>> config.sections() [] >>> config.read('example.ini') ['example.ini'] >>> config.sections() ['bitbucket.org', 'topsecret.server.com'] >>> 'bitbucket.org' in config True >>> 'bytebong.com' in config False >>> config['bitbucket.org']['User'] 'hg' >>> config['DEFAULT']['Compression'] 'yes' >>> topsecret = config['topsecret.server.com'] >>> topsecret['ForwardX11'] 'no' >>> topsecret['Port'] '50022' >>> for key in config['bitbucket.org']: print(key) ... user compressionlevel serveraliveinterval compression forwardx11 >>> config['bitbucket.org']['ForwardX11'] 'yes'
5.1 获取所有节点:
只能获取[]格式,作为节点项目。
import configparser config = configparser.ConfigParser() config.read('xxxooo', encoding='utf-8') ret = config.sections() print(ret)
5.2 获取指定节点下所有的键值对:
import configparser config = configparser.ConfigParser() config.read('xxxooo', encoding='utf-8') ret = config.items('section1') print(ret)
5.3 获取指定节点下所有的键:
import configparser config = configparser.ConfigParser() config.read('xxxooo', encoding='utf-8') ret = config.options('section1') print(ret)
5.4 获取指定节点下指定key的值
import configparser config = configparser.ConfigParser() config.read('xxxooo', encoding='utf-8') v = config.get('section1', 'k1') # v = config.getint('section1', 'k1') # v = config.getfloat('section1', 'k1') # v = config.getboolean('section1', 'k1') print(v)
5.5 检查、删除、添加节点
import configparser config = configparser.ConfigParser() config.read('xxxooo', encoding='utf-8') # 检查 has_sec = config.has_section('section1') print(has_sec) # 添加节点 config.add_section("SEC_1") config.write(open('xxxooo', 'w')) # 删除节点 config.remove_section("SEC_1") config.write(open('xxxooo', 'w'))
5.6 检查、删除、设置指定组内的键值对
import configparser config = configparser.ConfigParser() config.read('xxxooo', encoding='utf-8') # 检查 has_opt = config.has_option('section1', 'k1') print(has_opt) # 删除 config.remove_option('section1', 'k1') config.write(open('xxxooo', 'w')) # 设置 config.set('section1', 'k10', "123") config.write(open('xxxooo', 'w'))
6、XML
XML是实现不同语言或程序之间进行数据交换的协议,XML文件格式如下:
<data> <country name="Liechtenstein"> <rank updated="yes">2</rank> <year>2023</year> <gdppc>141100</gdppc> <neighbor direction="E" name="Austria" /> <neighbor direction="W" name="Switzerland" /> </country> <country name="Singapore"> <rank updated="yes">5</rank> <year>2026</year> <gdppc>59900</gdppc> <neighbor direction="N" name="Malaysia" /> </country> <country name="Panama"> <rank updated="yes">69</rank> <year>2026</year> <gdppc>13600</gdppc> <neighbor direction="W" name="Costa Rica" /> <neighbor direction="E" name="Colombia" /> </country> </data>
6.1 解析XML
from xml.etree import ElementTree as ET # 打开文件,读取XML内容 str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点 root = ET.XML(str_xml)
from xml.etree import ElementTree as ET # 直接解析xml文件 tree = ET.parse("xo.xml") # 获取xml文件的根节点 root = tree.getroot()
6.2 操作XML
XML格式类型是节点嵌套节点,对于每一个节点均有以下功能,以便对当前节点进行操作:
class Element: """An XML element. This class is the reference implementation of the Element interface. An element's length is its number of subelements. That means if you want to check if an element is truly empty, you should check BOTH its length AND its text attribute. The element tag, attribute names, and attribute values can be either bytes or strings. *tag* is the element name. *attrib* is an optional dictionary containing element attributes. *extra* are additional element attributes given as keyword arguments. Example form: <tag attrib>text<child/>...</tag>tail """ 当前节点的标签名 tag = None """The element's name.""" 当前节点的属性 attrib = None """Dictionary of the element's attributes.""" 当前节点的内容 text = None """ Text before first subelement. This is either a string or the value None. Note that if there is no text, this attribute may be either None or the empty string, depending on the parser. """ tail = None """ Text after this element's end tag, but before the next sibling element's start tag. This is either a string or the value None. Note that if there was no text, this attribute may be either None or an empty string, depending on the parser. """ def __init__(self, tag, attrib={}, **extra): if not isinstance(attrib, dict): raise TypeError("attrib must be dict, not %s" % ( attrib.__class__.__name__,)) attrib = attrib.copy() attrib.update(extra) self.tag = tag self.attrib = attrib self._children = [] def __repr__(self): return "<%s %r at %#x>" % (self.__class__.__name__, self.tag, id(self)) def makeelement(self, tag, attrib): 创建一个新节点 """Create a new element with the same type. *tag* is a string containing the element name. *attrib* is a dictionary containing the element attributes. Do not call this method, use the SubElement factory function instead. """ return self.__class__(tag, attrib) def copy(self): """Return copy of current element. This creates a shallow copy. Subelements will be shared with the original tree. """ elem = self.makeelement(self.tag, self.attrib) elem.text = self.text elem.tail = self.tail elem[:] = self return elem def __len__(self): return len(self._children) def __bool__(self): warnings.warn( "The behavior of this method will change in future versions. " "Use specific 'len(elem)' or 'elem is not None' test instead.", FutureWarning, stacklevel=2 ) return len(self._children) != 0 # emulate old behaviour, for now def __getitem__(self, index): return self._children[index] def __setitem__(self, index, element): # if isinstance(index, slice): # for elt in element: # assert iselement(elt) # else: # assert iselement(element) self._children[index] = element def __delitem__(self, index): del self._children[index] def append(self, subelement): 为当前节点追加一个子节点 """Add *subelement* to the end of this element. The new element will appear in document order after the last existing subelement (or directly after the text, if it's the first subelement), but before the end tag for this element. """ self._assert_is_element(subelement) self._children.append(subelement) def extend(self, elements): 为当前节点扩展 n 个子节点 """Append subelements from a sequence. *elements* is a sequence with zero or more elements. """ for element in elements: self._assert_is_element(element) self._children.extend(elements) def insert(self, index, subelement): 在当前节点的子节点中插入某个节点,即:为当前节点创建子节点,然后插入指定位置 """Insert *subelement* at position *index*.""" self._assert_is_element(subelement) self._children.insert(index, subelement) def _assert_is_element(self, e): # Need to refer to the actual Python implementation, not the # shadowing C implementation. if not isinstance(e, _Element_Py): raise TypeError('expected an Element, not %s' % type(e).__name__) def remove(self, subelement): 在当前节点在子节点中删除某个节点 """Remove matching subelement. Unlike the find methods, this method compares elements based on identity, NOT ON tag value or contents. To remove subelements by other means, the easiest way is to use a list comprehension to select what elements to keep, and then use slice assignment to update the parent element. ValueError is raised if a matching element could not be found. """ # assert iselement(element) self._children.remove(subelement) def getchildren(self): 获取所有的子节点(废弃) """(Deprecated) Return all subelements. Elements are returned in document order. """ warnings.warn( "This method will be removed in future versions. " "Use 'list(elem)' or iteration over elem instead.", DeprecationWarning, stacklevel=2 ) return self._children def find(self, path, namespaces=None): 获取第一个寻找到的子节点 """Find first matching element by tag name or path. *path* is a string having either an element tag or an XPath, *namespaces* is an optional mapping from namespace prefix to full name. Return the first matching element, or None if no element was found. """ return ElementPath.find(self, path, namespaces) def findtext(self, path, default=None, namespaces=None): 获取第一个寻找到的子节点的内容 """Find text for first matching element by tag name or path. *path* is a string having either an element tag or an XPath, *default* is the value to return if the element was not found, *namespaces* is an optional mapping from namespace prefix to full name. Return text content of first matching element, or default value if none was found. Note that if an element is found having no text content, the empty string is returned. """ return ElementPath.findtext(self, path, default, namespaces) def findall(self, path, namespaces=None): 获取所有的子节点 """Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath, *namespaces* is an optional mapping from namespace prefix to full name. Returns list containing all matching elements in document order. """ return ElementPath.findall(self, path, namespaces) def iterfind(self, path, namespaces=None): 获取所有指定的节点,并创建一个迭代器(可以被for循环) """Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath, *namespaces* is an optional mapping from namespace prefix to full name. Return an iterable yielding all matching elements in document order. """ return ElementPath.iterfind(self, path, namespaces) def clear(self): 清空节点 """Reset element. This function removes all subelements, clears all attributes, and sets the text and tail attributes to None. """ self.attrib.clear() self._children = [] self.text = self.tail = None def get(self, key, default=None): 获取当前节点的属性值 """Get element attribute. Equivalent to attrib.get, but some implementations may handle this a bit more efficiently. *key* is what attribute to look for, and *default* is what to return if the attribute was not found. Returns a string containing the attribute value, or the default if attribute was not found. """ return self.attrib.get(key, default) def set(self, key, value): 为当前节点设置属性值 """Set element attribute. Equivalent to attrib[key] = value, but some implementations may handle this a bit more efficiently. *key* is what attribute to set, and *value* is the attribute value to set it to. """ self.attrib[key] = value def keys(self): 获取当前节点的所有属性的 key """Get list of attribute names. Names are returned in an arbitrary order, just like an ordinary Python dict. Equivalent to attrib.keys() """ return self.attrib.keys() def items(self): 获取当前节点的所有属性值,每个属性都是一个键值对 """Get element attributes as a sequence. The attributes are returned in arbitrary order. Equivalent to attrib.items(). Return a list of (name, value) tuples. """ return self.attrib.items() def iter(self, tag=None): 在当前节点的子孙中根据节点名称寻找所有指定的节点,并返回一个迭代器(可以被for循环)。 """Create tree iterator. The iterator loops over the element and all subelements in document order, returning all elements with a matching tag. If the tree structure is modified during iteration, new or removed elements may or may not be included. To get a stable set, use the list() function on the iterator, and loop over the resulting list. *tag* is what tags to look for (default is to return all elements) Return an iterator containing all the matching elements. """ if tag == "*": tag = None if tag is None or self.tag == tag: yield self for e in self._children: yield from e.iter(tag) # compatibility def getiterator(self, tag=None): # Change for a DeprecationWarning in 1.4 warnings.warn( "This method will be removed in future versions. " "Use 'elem.iter()' or 'list(elem.iter())' instead.", PendingDeprecationWarning, stacklevel=2 ) return list(self.iter(tag)) def itertext(self): 在当前节点的子孙中根据节点名称寻找所有指定的节点的内容,并返回一个迭代器(可以被for循环)。 """Create text iterator. The iterator loops over the element and all subelements in document order, returning all inner text. """ tag = self.tag if not isinstance(tag, str) and tag is not None: return if self.text: yield self.text for e in self: yield from e.itertext() if e.tail: yield e.tail
由于 每个节点 都具有以上的方法,并且在上一步骤中解析时均得到了root(xml文件的根节点),so 可以利用以上方法进行操作xml文件。
a. 遍历XML文档的所有内容
from xml.etree import ElementTree as ET ############ 解析方式一 ############ """ # 打开文件,读取XML内容 str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点 root = ET.XML(str_xml) """ ############ 解析方式二 ############ # 直接解析xml文件 tree = ET.parse("xo.xml") # 获取xml文件的根节点 root = tree.getroot() ### 操作 # 顶层标签 print(root.tag) # 遍历XML文档的第二层 for child in root: # 第二层节点的标签名称和标签属性 print(child.tag, child.attrib) # 遍历XML文档的第三层 for i in child: # 第二层节点的标签名称和内容 print(i.tag,i.text)
b、遍历XML中指定的节点
from xml.etree import ElementTree as ET ############ 解析方式一 ############ """ # 打开文件,读取XML内容 str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点 root = ET.XML(str_xml) """ ############ 解析方式二 ############ # 直接解析xml文件 tree = ET.parse("xo.xml") # 获取xml文件的根节点 root = tree.getroot() ### 操作 # 顶层标签 print(root.tag) # 遍历XML中所有的year节点 for node in root.iter('year'): # 节点的标签名称和内容 print(node.tag, node.text)
c、修改节点内容
由于修改的节点时,均是在内存中进行,其不会影响文件中的内容。所以,如果想要修改,则需要重新将内存中的内容写到文件。
from xml.etree import ElementTree as ET ############ 解析方式一 ############ # 打开文件,读取XML内容 str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点 root = ET.XML(str_xml) ############ 操作 ############ # 顶层标签 print(root.tag) # 循环所有的year节点 for node in root.iter('year'): # 将year节点中的内容自增一 new_year = int(node.text) + 1 node.text = str(new_year) # 设置属性 node.set('name', 'alex') node.set('age', '18') # 删除属性 del node.attrib['name'] ############ 保存文件 ############ tree = ET.ElementTree(root) tree.write("newnew.xml", encoding='utf-8')
from xml.etree import ElementTree as ET ############ 解析方式二 ############ # 直接解析xml文件 tree = ET.parse("xo.xml") # 获取xml文件的根节点 root = tree.getroot() ############ 操作 ############ # 顶层标签 print(root.tag) # 循环所有的year节点 for node in root.iter('year'): # 将year节点中的内容自增一 new_year = int(node.text) + 1 node.text = str(new_year) # 设置属性 node.set('name', 'alex') node.set('age', '18') # 删除属性 del node.attrib['name'] ############ 保存文件 ############ tree.write("newnew.xml", encoding='utf-8')
d、删除节点
from xml.etree import ElementTree as ET ############ 解析字符串方式打开 ############ # 打开文件,读取XML内容 str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点 root = ET.XML(str_xml) ############ 操作 ############ # 顶层标签 print(root.tag) # 遍历data下的所有country节点 for country in root.findall('country'): # 获取每一个country节点下rank节点的内容 rank = int(country.find('rank').text) if rank > 50: # 删除指定country节点 root.remove(country) ############ 保存文件 ############ tree = ET.ElementTree(root) tree.write("newnew.xml", encoding='utf-8')
from xml.etree import ElementTree as ET ############ 解析文件方式 ############ # 直接解析xml文件 tree = ET.parse("xo.xml") # 获取xml文件的根节点 root = tree.getroot() ############ 操作 ############ # 顶层标签 print(root.tag) # 遍历data下的所有country节点 for country in root.findall('country'): # 获取每一个country节点下rank节点的内容 rank = int(country.find('rank').text) if rank > 50: # 删除指定country节点 root.remove(country) ############ 保存文件 ############ tree.write("newnew.xml", encoding='utf-8')
6.3 创建XML文档
from xml.etree import ElementTree as ET # 创建根节点 root = ET.Element("famliy") # 创建节点大儿子 son1 = ET.Element('son', {'name': '儿1'}) # 创建小儿子 son2 = ET.Element('son', {"name": '儿2'}) # 在大儿子中创建两个孙子 grandson1 = ET.Element('grandson', {'name': '儿11'}) grandson2 = ET.Element('grandson', {'name': '儿12'}) son1.append(grandson1) son1.append(grandson2) # 把儿子添加到根节点中 root.append(son1) root.append(son1) tree = ET.ElementTree(root) tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)
from xml.etree import ElementTree as ET # 创建根节点 root = ET.Element("famliy") # 创建大儿子 # son1 = ET.Element('son', {'name': '儿1'}) son1 = root.makeelement('son', {'name': '儿1'}) # 创建小儿子 # son2 = ET.Element('son', {"name": '儿2'}) son2 = root.makeelement('son', {"name": '儿2'}) # 在大儿子中创建两个孙子 # grandson1 = ET.Element('grandson', {'name': '儿11'}) grandson1 = son1.makeelement('grandson', {'name': '儿11'}) # grandson2 = ET.Element('grandson', {'name': '儿12'}) grandson2 = son1.makeelement('grandson', {'name': '儿12'}) son1.append(grandson1) son1.append(grandson2) # 把儿子添加到根节点中 root.append(son1) root.append(son1) tree = ET.ElementTree(root) tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)
from xml.etree import ElementTree as ET # 创建根节点 root = ET.Element("famliy") # 创建节点大儿子 son1 = ET.SubElement(root, "son", attrib={'name': '儿1'}) # 创建小儿子 son2 = ET.SubElement(root, "son", attrib={"name": "儿2"}) # 在大儿子中创建一个孙子 grandson1 = ET.SubElement(son1, "age", attrib={'name': '儿11'}) grandson1.text = '孙子' et = ET.ElementTree(root) #生成文档对象 et.write("test.xml", encoding="utf-8", xml_declaration=True, short_empty_elements=False)
由于原生保存的XML时默认无缩进,如果想要设置缩进的话, 需要修改保存方式:
from xml.etree import ElementTree as ET from xml.dom import minidom def prettify(elem): """将节点转换成字符串,并添加缩进。 """ rough_string = ET.tostring(elem, 'utf-8') reparsed = minidom.parseString(rough_string) return reparsed.toprettyxml(indent=" ") # 创建根节点 root = ET.Element("famliy") # 创建大儿子 # son1 = ET.Element('son', {'name': '儿1'}) son1 = root.makeelement('son', {'name': '儿1'}) # 创建小儿子 # son2 = ET.Element('son', {"name": '儿2'}) son2 = root.makeelement('son', {"name": '儿2'}) # 在大儿子中创建两个孙子 # grandson1 = ET.Element('grandson', {'name': '儿11'}) grandson1 = son1.makeelement('grandson', {'name': '儿11'}) # grandson2 = ET.Element('grandson', {'name': '儿12'}) grandson2 = son1.makeelement('grandson', {'name': '儿12'}) son1.append(grandson1) son1.append(grandson2) # 把儿子添加到根节点中 root.append(son1) root.append(son1) raw_str = prettify(root) f = open("xxxoo.xml",'w',encoding='utf-8') f.write(raw_str) f.close()
6.4 命名空间
详细介绍,猛击这里
7.requests
Python标准库中提供了:urllib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。
7.1发送GET请求
import urllib.request f = urllib.request.urlopen('http://www.webxml.com.cn//webservices/qqOnlineWebService.asmx/qqCheckOnline?qqCode=424662508') result = f.read().decode('utf-8')
7.2 发送携带请求头的GET请求:
import urllib.request req = urllib.request.Request('http://www.example.com/') req.add_header('Referer', 'http://www.python.org/') r = urllib.request.urlopen(req) result = f.read().decode('utf-8')
注:更多见Python官方文档:https://docs.python.org/3.5/library/urllib.request.html#module-urllib.request
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。
1、安装模块
pip3 install requests
2、使用模块 GET请求
# 1、无参数实例 import requests ret = requests.get('https://github.com/timeline.json') print(ret.url) print(ret.text) # 2、有参数实例 import requests payload = {'key1': 'value1', 'key2': 'value2'} ret = requests.get("http://httpbin.org/get", params=payload) print(ret.url) print(ret.text)
# 1、基本POST实例 import requests payload = {'key1': 'value1', 'key2': 'value2'} ret = requests.post("http://httpbin.org/post", data=payload) print(ret.text) # 2、发送请求头和数据实例 import requests import json url = 'https://api.github.com/some/endpoint' payload = {'some': 'data'} headers = {'content-type': 'application/json'} ret = requests.post(url, data=json.dumps(payload), headers=headers) print(ret.text) print(ret.cookies)
requests.get(url, params=None, **kwargs) requests.post(url, data=None, json=None, **kwargs) requests.put(url, data=None, **kwargs) requests.head(url, **kwargs) requests.delete(url, **kwargs) requests.patch(url, data=None, **kwargs) requests.options(url, **kwargs) # 以上方法均是在此方法的基础上构建 requests.request(method, url, **kwargs)
更多requests模块相关的文档见:http://cn.python-requests.org/zh_CN/latest/
3、Http请求和XML实例
实例:检测QQ账号是否在线
import urllib import requests from xml.etree import ElementTree as ET # 使用内置模块urllib发送HTTP请求,或者XML格式内容 """ f = urllib.request.urlopen('http://www.webxml.com.cn//webservices/qqOnlineWebService.asmx/qqCheckOnline?qqCode=424662508') result = f.read().decode('utf-8') """ # 使用第三方模块requests发送HTTP请求,或者XML格式内容 r = requests.get('http://www.webxml.com.cn//webservices/qqOnlineWebService.asmx/qqCheckOnline?qqCode=424662508') result = r.text # 解析XML格式内容 node = ET.XML(result) # 获取内容 if node.text == "Y": print("在线") else: print("离线")
实例:查看火车停靠信息
import urllib import requests from xml.etree import ElementTree as ET # 使用内置模块urllib发送HTTP请求,或者XML格式内容 """ f = urllib.request.urlopen('http://www.webxml.com.cn/WebServices/TrainTimeWebService.asmx/getDetailInfoByTrainCode?TrainCode=G666&UserID=') result = f.read().decode('utf-8') """ # 使用第三方模块requests发送HTTP请求,或者XML格式内容 r = requests.get('http://www.webxml.com.cn/WebServices/TrainTimeWebService.asmx/getDetailInfoByTrainCode?TrainCode=G666&UserID=') result = r.text # 解析XML格式内容 root = ET.XML(result) for node in root.iter('TrainDetailInfo'): print(node.find('TrainStation').text,node.find('StartTime').text,node.tag,node.attrib)
注:更多接口猛击这里
8、loggin模块
用于便捷记录日志且线程安全的模块
8.1单文件日志
import logging logging.basicConfig(filename='log.log', format='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S %p', level=10) logging.debug('debug') logging.info('info') logging.warning('warning') logging.error('error') logging.critical('critical') logging.log(10,'log')
最简单用法:
import logging logging.warning("user [alex] attempted wrong password more than 3 times") logging.critical("server is down") #输出 WARNING:root:user [alex] attempted wrong password more than 3 times CRITICAL:root:server is down
日志等级:
CRITICAL = 50 FATAL = CRITICAL ERROR = 40 WARNING = 30 WARN = WARNING INFO = 20 DEBUG = 10 NOTSET = 0
注:只有【当前写等级】大于【日志等级】时,日志文件才被记录。
日志记录格式:
日志格式
%(name)s |
Logger的名字 |
%(levelno)s |
数字形式的日志级别 |
%(levelname)s |
文本形式的日志级别 |
%(pathname)s |
调用日志输出函数的模块的完整路径名,可能没有 |
%(filename)s |
调用日志输出函数的模块的文件名 |
%(module)s |
调用日志输出函数的模块名 |
%(funcName)s |
调用日志输出函数的函数名 |
%(lineno)d |
调用日志输出函数的语句所在的代码行 |
%(created)f |
当前时间,用UNIX标准的表示时间的浮 点数表示 |
%(relativeCreated)d |
输出日志信息时的,自Logger创建以 来的毫秒数 |
%(asctime)s |
字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒 |
%(thread)d |
线程ID。可能没有 |
%(threadName)s |
线程名。可能没有 |
%(process)d |
进程ID。可能没有 |
%(message)s |
用户输出的消息 |
8.2 多文件日志
对于上述记录日志的功能,只能将日志记录在单文件中,如果想要设置多个日志文件,logging.basicConfig将无法完成,需要自定义文件和日志操作对象。
# 定义文件 file_1_1 = logging.FileHandler('l1_1.log', 'a', encoding='utf-8') fmt = logging.Formatter(fmt="%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s") file_1_1.setFormatter(fmt) file_1_2 = logging.FileHandler('l1_2.log', 'a', encoding='utf-8') fmt = logging.Formatter() file_1_2.setFormatter(fmt) # 定义日志 logger1 = logging.Logger('s1', level=logging.ERROR) logger1.addHandler(file_1_1) logger1.addHandler(file_1_2) # 写日志 logger1.critical('1111')
# 定义文件 file_2_1 = logging.FileHandler('l2_1.log', 'a') fmt = logging.Formatter() file_2_1.setFormatter(fmt) # 定义日志 logger2 = logging.Logger('s2', level=logging.INFO) logger2.addHandler(file_2_1)
如上述创建的两个日志对象
- 当使用【logger1】写日志时,会将相应的内容写入 l1_1.log 和 l1_2.log 文件中
- 当使用【logger2】写日志时,会将相应的内容写入 l2_1.log 文件中
如果想同时把log打印在屏幕和文件日志里,就需要了解一点复杂的知识 了
Python 使用logging模块记录日志涉及四个主要类,使用官方文档中的概括最为合适:
logger提供了应用程序可以直接使用的接口;
handler将(logger创建的)日志记录发送到合适的目的输出;
filter提供了细度设备来决定输出哪条日志记录;
formatter决定日志记录的最终输出格式。
logger
每个程序在输出信息之前都要获得一个Logger。Logger通常对应了程序的模块名,比如聊天工具的图形界面模块可以这样获得它的Logger:
LOG=logging.getLogger(”chat.gui”)
而核心模块可以这样:
LOG=logging.getLogger(”chat.kernel”)
Logger.setLevel(lel):指定最低的日志级别,低于lel的级别将被忽略。debug是最低的内置级别,critical为最高
Logger.addFilter(filt)、Logger.removeFilter(filt):添加或删除指定的filter
Logger.addHandler(hdlr)、Logger.removeHandler(hdlr):增加或删除指定的handler
Logger.debug()、Logger.info()、Logger.warning()、Logger.error()、Logger.critical():可以设置的日志级别
handler
handler对象负责发送相关的信息到指定目的地。Python的日志系统有多种Handler可以使用。有些Handler可以把信息输出到控制台,有些Logger可以把信息输出到文件,还有些 Handler可以把信息发送到网络上。如果觉得不够用,还可以编写自己的Handler。可以通过addHandler()方法添加多个多handler
Handler.setLevel(lel):指定被处理的信息级别,低于lel级别的信息将被忽略
Handler.setFormatter():给这个handler选择一个格式
Handler.addFilter(filt)、Handler.removeFilter(filt):新增或删除一个filter对象
每个Logger可以附加多个Handler。接下来我们就来介绍一些常用的Handler:
1) logging.StreamHandler
使用这个Handler可以向类似与sys.stdout或者sys.stderr的任何文件对象(file object)输出信息。它的构造函数是:
StreamHandler([strm])
其中strm参数是一个文件对象。默认是sys.stderr
2) logging.FileHandler
和StreamHandler类似,用于向一个文件输出日志信息。不过FileHandler会帮你打开这个文件。它的构造函数是:
FileHandler(filename[,mode])
filename是文件名,必须指定一个文件名。
mode是文件的打开方式。参见Python内置函数open()的用法。默认是’a',即添加到文件末尾。
3) logging.handlers.RotatingFileHandler
这个Handler类似于上面的FileHandler,但是它可以管理文件大小。当文件达到一定大小之后,它会自动将当前日志文件改名,然后创建
一个新的同名日志文件继续输出。比如日志文件是chat.log。当chat.log达到指定的大小之后,RotatingFileHandler自动把
文件改名为chat.log.1。不过,如果chat.log.1已经存在,会先把chat.log.1重命名为chat.log.2。。。最后重新创建
chat.log,继续输出日志信息。它的构造函数是:
RotatingFileHandler( filename[, mode[, maxBytes[, backupCount]]])
其中filename和mode两个参数和FileHandler一样。
maxBytes用于指定日志文件的最大文件大小。如果maxBytes为0,意味着日志文件可以无限大,这时上面描述的重命名过程就不会发生。
backupCount用于指定保留的备份文件的个数。比如,如果指定为2,当上面描述的重命名过程发生时,原有的chat.log.2并不会被更名,而是被删除。
4) logging.handlers.TimedRotatingFileHandler
这个Handler和RotatingFileHandler类似,不过,它没有通过判断文件大小来决定何时重新创建日志文件,而是间隔一定时间就
自动创建新的日志文件。重命名的过程与RotatingFileHandler类似,不过新的文件不是附加数字,而是当前时间。它的构造函数是:
TimedRotatingFileHandler( filename [,when [,interval [,backupCount]]])
其中filename参数和backupCount参数和RotatingFileHandler具有相同的意义。
interval是时间间隔。
when参数是一个字符串。表示时间间隔的单位,不区分大小写。它有以下取值:
S 秒
M 分
H 小时
D 天
W 每星期(interval==0时代表星期一)
midnight 每天凌晨
import logging #create logger logger = logging.getLogger('TEST-LOG') logger.setLevel(logging.DEBUG) # create console handler and set level to debug ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create file handler and set level to warning fh = logging.FileHandler("access.log") fh.setLevel(logging.WARNING) # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter to ch and fh ch.setFormatter(formatter) fh.setFormatter(formatter) # add ch and fh to logger logger.addHandler(ch) logger.addHandler(fh) # 'application' code logger.debug('debug message') logger.info('info message') logger.warn('warn message') logger.error('error message') logger.critical('critical message')
文件自动截断例子
import logging from logging import handlers logger = logging.getLogger(__name__) log_file = "timelog.log" #fh = handlers.RotatingFileHandler(filename=log_file,maxBytes=10,backupCount=3) fh = handlers.TimedRotatingFileHandler(filename=log_file,when="S",interval=5,backupCount=3) formatter = logging.Formatter('%(asctime)s %(module)s:%(lineno)d %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) logger.warning("test1") logger.warning("test12") logger.warning("test13") logger.warning("test14")
9、系统命令,subprocess模块:
可以执行shell命令的相关模块和函数有:
- os.system
- os.spawn*
- os.popen* --废弃
- popen2.* --废弃
- commands.* --废弃,3.x中被移除
import commands result = commands.getoutput('cmd') result = commands.getstatus('cmd') result = commands.getstatusoutput('cmd')
以上执行shell命令的相关的模块和函数的功能均在 subprocess 模块中实现,并提供了更丰富的功能。
call
执行命令,返回状态码
ret = subprocess.call(["ls", "-l"], shell=False) ret = subprocess.call("ls -l", shell=True)
check_call
执行命令,如果执行状态码是 0 ,则返回0,否则抛异常
subprocess.check_call(["ls", "-l"]) subprocess.check_call("exit 1", shell=True)
check_output
执行命令,如果状态码是 0 ,则返回执行结果,否则抛异常
subprocess.check_output(["echo", "Hello World!"]) subprocess.check_output("exit 1", shell=True)
subprocess.Popen(...)
用于执行复杂的系统命令
参数:
- args:shell命令,可以是字符串或者序列类型(如:list,元组)
- bufsize:指定缓冲。0 无缓冲,1 行缓冲,其他 缓冲区大小,负值 系统缓冲
- stdin, stdout, stderr:分别表示程序的标准输入、输出、错误句柄
- preexec_fn:只在Unix平台下有效,用于指定一个可执行对象(callable object),它将在子进程运行之前被调用
- close_sfs:在windows平台下,如果close_fds被设置为True,则新创建的子进程将不会继承父进程的输入、输出、错误管道。
所以不能将close_fds设置为True同时重定向子进程的标准输入、输出与错误(stdin, stdout, stderr)。 - shell:同上
- cwd:用于设置子进程的当前目录
- env:用于指定子进程的环境变量。如果env = None,子进程的环境变量将从父进程中继承。
- universal_newlines:不同系统的换行符不同,True -> 同意使用
- startupinfo与createionflags只在windows下有效
将被传递给底层的CreateProcess()函数,用于设置子进程的一些属性,如:主窗口的外观,进程的优先级等等
import subprocess ret1 = subprocess.Popen(["mkdir","t1"]) ret2 = subprocess.Popen("mkdir t2", shell=True)
终端输入的命令分为两种:
- 输入即可得到输出,如:ifconfig
- 输入进行某环境,依赖再输入,如:python
1.import subprocess obj = subprocess.Popen("mkdir t3", shell=True, cwd='/home/dev',) 2.import subprocess obj = subprocess.Popen(["python"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) obj.stdin.write("print(1) ") obj.stdin.write("print(2)") obj.stdin.close() cmd_out = obj.stdout.read() obj.stdout.close() cmd_error = obj.stderr.read() obj.stderr.close() print(cmd_out) print(cmd_error) 3.import subprocess obj = subprocess.Popen(["python"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) obj.stdin.write("print(1) ") obj.stdin.write("print(2)") out_error_list = obj.communicate() print(out_error_list) 4.import subprocess obj = subprocess.Popen(["python"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) out_error_list = obj.communicate('print("hello")') print(out_error_list)
10、shutil
高级的 文件、文件夹、压缩包 处理模块
shutil.copyfileobj(fsrc, fdst[, length])
将文件内容拷贝到另一个文件中
import shutil shutil.copyfileobj(open('old.xml','r'), open('new.xml', 'w'))
shutil.copyfile(src, dst)
拷贝文件
shutil.copyfile('f1.log', 'f2.log')
shutil.copymode(src, dst)
仅拷贝权限。内容、组、用户均不变
shutil.copymode('f1.log', 'f2.log')
shutil.copystat(src, dst)
仅拷贝状态的信息,包括:mode bits, atime, mtime, flags
shutil.copystat('f1.log', 'f2.log')
shutil.copy(src, dst)
拷贝文件和权限
import shutil shutil.copy('f1.log', 'f2.log')
shutil.copy2(src, dst)拷贝文件和状态信息
import shutil shutil.copy2('f1.log', 'f2.log')
shutil.ignore_patterns(*patterns)
shutil.copytree(src, dst, symlinks=False, ignore=None)
递归的去拷贝文件夹
import shutil shutil.copytree('folder1', 'folder2', ignore=shutil.ignore_patterns('*.pyc', 'tmp*'))
import shutil shutil.copytree('f1', 'f2', symlinks=True, ignore=shutil.ignore_patterns('*.pyc', 'tmp*'))
shutil.rmtree(path[, ignore_errors[, onerror]])
递归的去删除文件
import shutil shutil.rmtree('folder1')
shutil.move(src, dst)
递归的去移动文件,它类似mv命令,其实就是重命名。
import shutil shutil.move('folder1', 'folder3')
shutil.make_archive(base_name, format,...)
创建压缩包并返回文件路径,例如:zip、tar
创建压缩包并返回文件路径,例如:zip、tar
- base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
如:www =>保存至当前路径
如:/Users/wupeiqi/www =>保存至/Users/wupeiqi/ - format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
- root_dir: 要压缩的文件夹路径(默认当前目录)
- owner: 用户,默认当前用户
- group: 组,默认当前组
- logger: 用于记录日志,通常是logging.Logger对象
#将 /Users/wupeiqi/Downloads/test 下的文件打包放置当前程序目录 import shutil ret = shutil.make_archive("wwwwwwwwww", 'gztar', root_dir='/Users/wupeiqi/Downloads/test') #将 /Users/wupeiqi/Downloads/test 下的文件打包放置 /Users/wupeiqi/目录 import shutil ret = shutil.make_archive("/Users/wupeiqi/wwwwwwwwww", 'gztar', root_dir='/Users/wupeiqi/Downloads/test')
shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:
import zipfile # 压缩 z = zipfile.ZipFile('laxi.zip', 'w') z.write('a.log') z.write('data.data') z.close() # 解压 z = zipfile.ZipFile('laxi.zip', 'r') z.extractall() z.close()
import tarfile # 压缩 tar = tarfile.open('your.tar','w') tar.add('/Users/wupeiqi/PycharmProjects/bbs2.log', arcname='bbs2.log') tar.add('/Users/wupeiqi/PycharmProjects/cmdb.log', arcname='cmdb.log') tar.close() # 解压 tar = tarfile.open('your.tar','r') tar.extractall() # 可设置解压地址 tar.close()
10、PyYAML模块
Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块,参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation
11、paramiko
paramiko是一个用于做远程控制的模块,使用该模块可以对远程服务器进行命令或文件操作,值得一说的是,fabric和ansible内部的远程管理就是使用的paramiko来现实。
1、下载安装
pycrypto,由于 paramiko 模块内部依赖pycrypto,所以先下载安装pycrypto
pip3 install pycrypto
pip3 install paramiko
#!/usr/bin/env python #coding:utf-8 import paramiko ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect('192.168.1.108', 22, 'alex', '123') stdin, stdout, stderr = ssh.exec_command('df') print stdout.read() ssh.close();
import paramiko private_key_path = '/home/auto/.ssh/id_rsa' key = paramiko.RSAKey.from_private_key_file(private_key_path) ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect('主机名 ', 端口, '用户名', key) stdin, stdout, stderr = ssh.exec_command('df') print stdout.read() ssh.close()
import os,sys import paramiko t = paramiko.Transport(('182.92.219.86',22)) t.connect(username='wupeiqi',password='123') sftp = paramiko.SFTPClient.from_transport(t) sftp.put('/tmp/test.py','/tmp/test.py') t.close() import os,sys import paramiko t = paramiko.Transport(('182.92.219.86',22)) t.connect(username='wupeiqi',password='123') sftp = paramiko.SFTPClient.from_transport(t) sftp.get('/tmp/test.py','/tmp/test2.py') t.close()
import paramiko pravie_key_path = '/home/auto/.ssh/id_rsa' key = paramiko.RSAKey.from_private_key_file(pravie_key_path) t = paramiko.Transport(('182.92.219.86',22)) t.connect(username='wupeiqi',pkey=key) sftp = paramiko.SFTPClient.from_transport(t) sftp.put('/tmp/test3.py','/tmp/test3.py') t.close() import paramiko pravie_key_path = '/home/auto/.ssh/id_rsa' key = paramiko.RSAKey.from_private_key_file(pravie_key_path) t = paramiko.Transport(('182.92.219.86',22)) t.connect(username='wupeiqi',pkey=key) sftp = paramiko.SFTPClient.from_transport(t) sftp.get('/tmp/test3.py','/tmp/test4.py') t.close()
12、time模块
时间相关的操作,时间有三种表示方式:
- 时间戳 1970年1月1日之后的秒,即:time.time()
- 格式化的字符串 2014-11-11 11:11, 即:time.strftime('%Y-%m-%d')
- 结构化时间 元组包含了:年、日、星期等... time.struct_time 即:time.localtime()
print time.time() print time.mktime(time.localtime()) print time.gmtime() #可加时间戳参数 print time.localtime() #可加时间戳参数 print time.strptime('2014-11-11', '%Y-%m-%d') print time.strftime('%Y-%m-%d') #默认当前时间 print time.strftime('%Y-%m-%d',time.localtime()) #默认当前时间 print time.asctime() print time.asctime(time.localtime()) print time.ctime(time.time()) import datetime ''' datetime.date:表示日期的类。常用的属性有year, month, day datetime.time:表示时间的类。常用的属性有hour, minute, second, microsecond datetime.datetime:表示日期时间 datetime.timedelta:表示时间间隔,即两个时间点之间的长度 timedelta([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, weeks]]]]]]]) strftime("%Y-%m-%d") ''' import datetime print datetime.datetime.now() print datetime.datetime.now() - datetime.timedelta(days=5)
%Y Year with century as a decimal number. %m Month as a decimal number [01,12]. %d Day of the month as a decimal number [01,31]. %H Hour (24-hour clock) as a decimal number [00,23]. %M Minute as a decimal number [00,59]. %S Second as a decimal number [00,61]. %z Time zone offset from UTC. %a Locale's abbreviated weekday name. %A Locale's full weekday name. %b Locale's abbreviated month name. %B Locale's full month name. %c Locale's appropriate date and time representation. %I Hour (12-hour clock) as a decimal number [01,12]. %p Locale's equivalent of either AM or PM.
1、通过HTTP请求和XML实现获取电视节目
API:http://www.webxml.com.cn/webservices/ChinaTVprogramWebService.asmx
2、通过HTTP请求和JSON实现获取天气状况
API:http://wthrcdn.etouch.cn/weather_mini?city=北京