zoukankan      html  css  js  c++  java
  • 2010辽宁省赛G(佩尔方程)


    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <math.h>
    using namespace std;
     
    int can[1005] = {0};
    int a[10005][605]= {0};
    int x[6005], y[6005], t[6005];
    int h1,h2;
    int bb, ee, xx, yy, c, n;
     
    void Pell(int ji,int many,int ma,int kk)
    {
        if (ji < kk)
            Pell(ji + 1, a[ma][(ji-1)%a[ma][600]+1], ma, kk);
        else
        {
            h1 = 1;
            h2 = 1;
            x[1] = many;
            y[1] = 1;
            return;
        }
        for (int i = 1; i <= h1; i++)
            t[i] = x[i];
        for (int i = 1; i <= h2; i++)
            x[i] = y[i];
        for (int i = 1; i <= h1; i++)
            y[i] = t[i];
        c = h1;
        h1 = h2;
        h2 = c;
        for (int i = 1; i <= h2; i++)
            if (i <= h1)
                x[i] += many * y[i];
            else
                x[i] = many * y[i];
        if (h2 > h1)
            h1 = h2;
        for (int i = 1; i < h1; i++)
            if (x[i] >= 10)
            {
                x[i+1] += x[i] / 10;
                x[i] %= 10;
            }
        while(x[h1] >= 10)
        {
            x[h1+1] = x[h1] / 10;
            x[h1] %= 10;
            h1++;
        }
        x[0] = h1;
    }
     
    void solve()
    {
        int i, j;
        for (j = 1; j <= 31; j++)
            can[j*j] = true;
        for(i = 1; i <= 1000; i++)
        {
            if(!can[i])
            {
                a[i][600]=1;
                bb = 1;
                ee = (int)sqrt((double)i);
                a[i][0] = ee;
                ee =- ee;
                xx = bb;
                yy = ee;
                xx =- yy;
                yy = i - yy * yy;
                n=0;
                while((xx - yy) * (xx - yy) < i || xx >= 0)
                {
                    xx -= yy;
                    n++;
                }
                a[i][1] = n;
                c = xx, xx = yy, yy = c;
                while(xx != bb || yy != ee)
                {
                    a[i][600]++;
                    c = xx;
                    xx =- yy;
                    yy = i - yy * yy;
                    yy = yy / c;
                    n = 0;
                    while ((xx - yy) * (xx - yy) < i || xx >= 0)
                    {
                        xx -= yy;
                        n++;
                    }
                    a[i][a[i][600]] = n;
                    c = xx, xx = yy, yy = c;
                }
            }
        }
    }
     
    int main()
    {
        int k;
        solve();
        while(scanf("%d",&k)!=EOF)///ans^2 = k * n ^ 2 + 1,求ans的最小值(k <= 1000)
        {
            if(!can[k])
            {
                if(a[k][600] % 2)
                    Pell(1, a[k][0], k, a[k][600]*2);
                else
                    Pell(1, a[k][0], k, a[k][600]);
                for (int j = x[0]; j >= 1; j--)
                    printf("%d",x[j]);
                printf(" ");
            }
            else
                printf("no solution ");
        }
        return 0;
    }
    /*非常裸的佩尔方程模板,输入一个数k,求方程ans^2 = k*n*n+1 中ans的最小整数解(n是大于等于一的整数,无上限),多积累数论,这个原理仍待了解,//求出p2 - D * q2 = 1的基解(最小正整数解),这个可能溢出,有必要的话,用java, 写成类比较好
    bool PQA(LLI D, LLI &p, LLI &q) {//来自于PQA算法的一个特例
        LLI d = sqrt(D);
        if ((d + 1) * (d + 1) == D) return false;
        if (d * d == D)             return false;
        if ((d - 1) * (d - 1) == D) return false;//这里是判断佩尔方程有没有解
        LLI u = 0, v = 1, a = int(sqrt(D)), a0 = a, lastp = 1, lastq = 0;
        p = a, q = 1;
        do {
            u = a * v - u;
            v = (D - u * u) / v;
            a = (a0 + u) / v;
            LLI thisp = p, thisq = q;
            p = a * p + lastp;
            q = a * q + lastq;
            lastp = thisp;
            lastq = thisq;
        } while ((v != 1 && a <= a0));//这里一定要用do~while循环
        p = lastp;
        q = lastq;
        //这样求出后的(p,q)是p2 – D * q2 = (-1)k的解,也就是说p2 – D * q2可能等于1也可能等于-1,如果等于1,(p,q)就是解,如果等于-1还要通过(p2 + D * q2,2 * p * q)来求解,如下
        if (p * p - D * q * q == -1) {
            p = lastp * lastp + D * lastq * lastq;
            q = 2 * lastp * lastq;
        }
        return true;
    }
    */
     
    保持热爱 不懈努力 不试试看怎么知道会失败呢(划掉) 世上无难事 只要肯放弃(划掉)
  • 相关阅读:
    【HTML】html站标设置、网页小图标
    【idea】2020完整安装过程
    pptp,l2tp获取登录用户信息用pppd参数即可
    Postfix+Dovecot+MySQL搭建邮件服务器(续)
    Postfix+Dovecot+MySQL搭建邮件服务器
    zimage 和bzimage 有什么区别
    Linux编译内核
    8种nosql数据库对比
    core dump
    ulimit -c unlimited
  • 原文地址:https://www.cnblogs.com/ldudxy/p/9412292.html
Copyright © 2011-2022 走看看