zoukankan      html  css  js  c++  java
  • 算法第二章上机实践报告

    实践题目

       2-3 蜜蜂路线 (20分)

    问题描述  

    有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行。请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数。 其中,蜂房的结构如下所示。

        C40-1001-1.jpg

    输入格式:

    输入 m,n 的值, 0<m<n<30

    输出格式:

    一个整数,爬行有多少种路线

    输入样例:

    1 14
    
     

    输出样例:

    377

    算法描述

    看图形,每到一个数,就有两条路可走,满足斐波那契数列的模型,因此这道题实际上还是用递归算法求解。不过这里应该注意的是,此时是逆向求解,要求f(1),得先一直递归直到能求f(12),再反过来求f(1)

    #include <iostream> 
     #define SIZE 15001 
     using namespace std; 
     int f[SIZE] ;
     int main(){
         int n, m, i; 
         cin >> m >> n;   
         f[m]=1;
         f[m+1]=1;
         for (i = m+2; i <= n; i++)
             f[i] = f[i-1] + f[i-2];
         cout << f[n] << endl; 
         return 0;
      }

    算法时间及空间复杂度分析(要有分析过程)

    时间复杂度:

      复杂度实际上在与循环次数有关T(n) = 3 + 3 * (n - m + 1) =O(n)

    空间复杂度:

      因为每个变量空间复杂度为O(1),斐波那契数列的非递归算法空间复杂度为O(1)。

    心得体会(对本次实践收获及疑惑进行总结)

    其实这道题一开始我是完全读不懂题意,甚至那些样例我也看不懂,因为14,377都太大了,很难枚举找出关系,甚至后来上网查找有关这道题,我也还是搞不懂为什么这道题属于斐波那契数列,后来在博客上多看了其他人的做法学习,后来就慢慢理解了。这道题算是算法的入门级题吧,让我意识到一道奇奇怪怪的题,里面的做法都是来自算法的方法里,可能很难理解,但就是能用算法里的方法将这种奇怪的题化成书里那些经典的例题,像最近才做完的派这道题也是这样。

  • 相关阅读:
    Jmeter-日期格式转换为时间戳
    Java中异常的处理
    Java中接口的新特性,为接口添加静态方法和默认方法
    Java接口的应用之代理模式
    Java之接口(interface)的理解
    JAVA中使用super调用属性、方法、构造器
    JAVA方法的重写
    Java之方法
    Java之匿名对象
    关于多态性的使用
  • 原文地址:https://www.cnblogs.com/ldx539/p/13771934.html
Copyright © 2011-2022 走看看