zoukankan      html  css  js  c++  java
  • HDU4251-The Famous ICPC Team Again(划分树)

    Problem Description
    When Mr. B, Mr. G and Mr. M were preparing for the 2012 ACM-ICPC World Final Contest, Mr. B had collected a large set of contest problems for their daily training. When they decided to take training, Mr. B would choose one of them from the problem set. All the problems in the problem set had been sorted by their time of publish. Each time Prof. S, their coach, would tell them to choose one problem published within a particular time interval. That is to say, if problems had been sorted in a line, each time they would choose one of them from a specified segment of the line.

    Moreover, when collecting the problems, Mr. B had also known an estimation of each problem’s difficultness. When he was asked to choose a problem, if he chose the easiest one, Mr. G would complain that “Hey, what a trivial problem!”; if he chose the hardest one, Mr. M would grumble that it took too much time to finish it. To address this dilemma, Mr. B decided to take the one with the medium difficulty. Therefore, he needed a way to know the median number in the given interval of the sequence.
     

    Input
    For each test case, the first line contains a single integer n (1 <= n <= 100,000) indicating the total number of problems. The second line contains n integers xi (0 <= xi <= 1,000,000,000), separated by single space, denoting the difficultness of each problem, already sorted by publish time. The next line contains a single integer m (1 <= m <= 100,000), specifying number of queries. Then m lines follow, each line contains a pair of integers, A and B (1 <= A <= B <= n), denoting that Mr. B needed to choose a problem between positions A and B (inclusively, positions are counted from 1). It is guaranteed that the number of items between A and B is odd.
     

    Output
    For each query, output a single line containing an integer that denotes the difficultness of the problem that Mr. B should choose.
     

    Sample Input
    5 5 3 2 4 1 3 1 3 2 4 3 5 5 10 6 4 8 2 3 1 3 2 4 3 5
     

    Sample Output
    Case 1: 3 3 2 Case 2: 6 6 4
     裸的 划分树。。


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <queue>
    using namespace std;
    const int maxn = 100000+10;
    int n,m;
    struct node{
        int lson,rson;
        int mid(){
            return (lson+rson)>>1;
        }
    }tree[maxn*4];
    int num[maxn];
    int seg[25][maxn];
    int  lftnum[25][maxn];
    void build(int L,int R,int rt,int  dep){
        tree[rt].lson = L;
        tree[rt].rson = R;
        if(L==R) return;
        int mid = tree[rt].mid(),key = num[mid];
        int lcnt  = mid-L+1;
        for(int i = L; i <= R; i++){
            if(seg[dep][i] < key){
                lcnt--;
            }
        }
        int sta = L, ed = mid+1;
        for(int i = L;i <= R; i++){
            if(i==L){
                lftnum[dep][i] = 0;
            }else{
                lftnum[dep][i]  = lftnum[dep][i-1];
            }
            if(seg[dep][i] < key){
                lftnum[dep][i]++;
                seg[dep+1][sta++] = seg[dep][i];
            }
            else if(seg[dep][i] > key){
                seg[dep+1][ed++] = seg[dep][i];
            }
            else{
                if(lcnt>0){
                    lftnum[dep][i]++;
                    lcnt--;
                    seg[dep+1][sta++] = seg[dep][i];
                }else{
                    seg[dep+1][ed++] = seg[dep][i];
                }
            }
        }
        build(L,mid,rt<<1,dep+1);
        build(mid+1,R,rt<<1|1,dep+1);
    }
    int query(int L,int R,int rt,int dep,int k){
        if(tree[rt].lson ==tree[rt].rson) return seg[dep][tree[rt].lson];
        int ucnt,ncnt;
        int mid = tree[rt].mid();
        if(tree[rt].lson == L){
            ncnt = 0;
            ucnt = lftnum[dep][R];
        }else{
            ncnt = lftnum[dep][L-1];
            ucnt = lftnum[dep][R] - lftnum[dep][L-1];
        }
        if(ucnt >= k){
            L = tree[rt].lson + ncnt;
            R = tree[rt].lson + ncnt + ucnt-1;
            return query(L,R,rt<<1,dep+1,k);
        }else{
            int a = L - tree[rt].lson - ncnt;
            int b = R - L - ucnt + 1;
            L = mid+a+1;
            R = mid+a+b;
            return query(L,R,rt<<1|1,dep+1,k-ucnt);
        }
    }
    
    int main(){
    
        int T = 1;
        while(cin >> n){
            memset(seg,0,sizeof seg);
            memset(lftnum,0,sizeof lftnum);
            for(int i = 1; i <= n; i++){
                scanf("%d",&num[i]);
                seg[0][i] = num[i];
            }
            sort(num+1,num+n+1);
            build(1,n,1,0);
            scanf("%d",&m);
            printf("Case %d:
    ",T++);
            while(m--){
                int a,b;
                scanf("%d%d",&a,&b);
                printf("%d
    ",query(a,b,1,0,(b-a)/2+1));
            }
        }
        return 0;
    }
    


查看全文
  • 相关阅读:
    数值分析实验之平方根法解线性方程组(MATLAB代码)
    Packet Tracer 下载方法
    注册 Netacad (思科)账户 超详细流程
    数值分析实验之非线性方程求根(Python 现)
    数值分析实验之非线性方程求根(MATLAB实现)
    数值分析实验之矩阵的LU分解及在解线性方程组中的应用(java 代码)
    数值分析实验之矩阵的LU分解及在解线性方程组中的应用(MATLAB 代码)
    数值分析实验之矩阵的LU分解及在解线性方程组中的应用(Python 代码)
    数值分析实验之数值积分法(MATLAB代码)
    在python3中安装mysql扩展,No module named 'ConfigParser'
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10494999.html
  • Copyright © 2011-2022 走看看