zoukankan      html  css  js  c++  java
  • HDU 4652 Dice (概率DP)

    版权声明:欢迎关注我的博客,本文为博主【炒饭君】原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/36685493

    Dice


    Problem Description
    You have a dice with m faces, each face contains a distinct number. We assume when we tossing the dice, each face will occur randomly and uniformly. Now you have T query to answer, each query has one of the following form:
    0 m n: ask for the expected number of tosses until the last n times results are all same.
    1 m n: ask for the expected number of tosses until the last n consecutive results are pairwise different.
     

    Input
    The first line contains a number T.(1≤T≤100) The next T line each line contains a query as we mentioned above. (1≤m,n≤106) For second kind query, we guarantee n≤m. And in order to avoid potential precision issue, we guarantee the result for our query will not exceeding 109 in this problem.
     

    Output
    For each query, output the corresponding result. The answer will be considered correct if the absolute or relative error doesn't exceed 10-6.
     

    Sample Input
    6 0 6 1 0 6 3 0 6 5 1 6 2 1 6 4 1 6 6 10 1 4534 25 1 1232 24 1 3213 15 1 4343 24 1 4343 9 1 65467 123 1 43434 100 1 34344 9 1 10001 15 1 1000000 2000
     

    Sample Output
    1.000000000 43.000000000 1555.000000000 2.200000000 7.600000000 83.200000000 25.586315824 26.015990037 15.176341160 24.541045769 9.027721917 127.908330426 103.975455253 9.003495515 15.056204472 4731.706620396
     

    Source
     


    题目大意:

    m边形的骰子,问你出现连续同样(不同)n次须要掷的次数的数学期望。


    解题思路:

    利用递归方式的DP的思想推公式


    (1)若询问为0,则:


    dp[i] 记录的是已经连续i个同样,到n个同样同须要的次数的数学期望
    dp[0]= 1+dp[1]
    dp[1]= 1+( 1/m*dp[2]+(m-1)/m*dp[1])=1+(dp[2]+(m-1)*dp[1])/m;
    dp[2]= 1+(dp[3]+(m-1)*dp[2])/m;
    ....................
    dp[n]= 0


    推出:

    dp[i]   = 1 + ( (m-1)*dp[1] + dp[i+1] ) / m
    dp[i+1] = 1 + ( (m-1)*dp[1] + dp[i+2] ) / m

    因此。m*(dp[i+1]-dp[i])=(dp[i+2]-dp[i+1])

    我们发现是等比数列

    dp[0]-dp[1]=1;
    dp[1]-dp[2]=m;
    ..........
    dp[n-1]-dp[n]=m^(n-1)

    累加,得:dp[0]-dp[n]=1+m+m^2+..........m^(n-1)=(1-m^n)/(1-m)

    所以:dp[0]=(1-m^n)/(1-m);

    (2)若询问为1,则:

     dp[0] = 1 + dp[1]
     dp[1] = 1 + (dp[1] + (m-1) dp[2]) / m
     dp[2] = 1 + (dp[1] + dp[2] + (m-2) dp[3]) / m
     dp[i] = 1 + (dp[1] + dp[2] + ... dp[i] + (m-i)*dp[i+1]) / m
    dp[i+1]= 1 + (dp[1] + dp[2] + ... dp[i] + dp[i+1] + (m-i-1)*dp[i+1]) / m
     ...
     dp[n] = 0;

    选出 dp[i] 和 dp[i+1] 这两行相减 得

    dp[i] - dp[i+1] = (m-i-1)/m * (dp[i+1] - dp[i+2]);

    因此  dp[i+1] - dp[i+2] = m/(m-i-1)*(dp[i]-dp[i+1]);

    所以:
    dp[0]-dp[1]=1;
    dp[1]-dp[2]=1*m/(m-1);
    dp[2]-dp[3]=1*m/(m-1)*m/(m-2);
    ..........

    dp[n-1]-dp[n]=1*m/(m-1)*m/(m-2)*.......*m/(m-n+1);

    累加得到答案


    解题代码:

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    
    inline double solve(){
        int op,m,n;
        scanf("%d%d%d",&op,&m,&n);
        double ans=0;
        if(op==0){
            for(int i=0;i<=n-1;i++){
                ans+=pow(1.0*m,i);
            }
        }else{
            double tmp=1.0;
            for(int i=1;i<=n;i++){
                ans+=tmp;
                tmp*=m*1.0/(m-i);
            }
        }
        return ans;
    }
    
    int main(){
        int t;
        while(scanf("%d",&t)!=EOF){
            while(t-- >0){
                printf( "%.9lf
    ",solve() );
            }
        }
        return 0;
    }
    






查看全文
  • 相关阅读:
    批量关闭远程计算机
    Tomcat6+IIS6集成及Tomcat负载均衡与Tomcat集群配置
    负载均衡服务器session共享的解决方案
    实现PostgreSQL数据库服务器的负载均衡
    OPENQUERY (TransactSQL)
    Webarok: 用 Web 浏览器控制 Amarok2
    Nginx+tomcat负载均衡session问题解决
    CorelDRAW 编写和运行宏指令
    FB/IB多代事务结构详解对FB事务最好的讲解
    VS2005[C#] 操作 Excel 全攻略
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10869612.html
  • Copyright © 2011-2022 走看看