zoukankan      html  css  js  c++  java
  • [伯努利数] poj 1707 Sum of powers

    题目链接:

    http://poj.org/problem?id=1707


    Language:
    Sum of powers
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 735   Accepted: 354

    Description

    A young schoolboy would like to calculate the sum 
     
    for some fixed natural k and different natural n. He observed that calculating ik for all i (1<=i<=n) and summing up results is a too slow way to do it, because the number of required arithmetical operations increases as n increases. Fortunately, there is another method which takes only a constant number of operations regardless of n. It is possible to show that the sum Sk(n) is equal to some polynomial of degree k+1 in the variable n with rational coefficients, i.e., 
     
    We require that integer M be positive and as small as possible. Under this condition the entire set of such numbers (i.e. M, ak+1, ak, ... , a1, a0) will be unique for the given k. You have to write a program to find such set of coefficients to help the schoolboy make his calculations quicker.

    Input

    The input file contains a single integer k (1<=k<=20).

    Output

    Write integer numbers M, ak+1, ak, ... , a1, a0 to the output file in the given order. Numbers should be separated by one space. Remember that you should write the answer with the smallest positive M possible.

    Sample Input

    2

    Sample Output

    6 2 3 1 0
    

    Source



    题目意思:

    已知而且求最小的M。使得a[k+1]---a[0]都为整数。

    解题思路:
    伯努利数:http://zh.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%95%B0


    所以有1^k+2^k+3^k+...+n^k=1/(k+1)(C[k+1,0)*B[0]*n^(k+1-0)+C[k+1,1]*B[1]*n^(k+1-1)+...+C[k+1,j]*B[j]*n^(k+1-j)+...+C[k+1,k]*B[k]*n^(k+1-k))+n^k

    先求出伯努利数,然后分母求最小公倍数就可以。

    注意n^k的系数要加上后面的n^k为C[k+1,1]*B[1]+(k+1)

    最后仅仅剩下分数加法了。

    注意最大公约数为负数的情况,强制转化为正数,用分子保存整个分数的正负性。

    代码:

    //#include<CSpreadSheet.h>
    
    #include<iostream>
    #include<cmath>
    #include<cstdio>
    #include<sstream>
    #include<cstdlib>
    #include<string>
    #include<string.h>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<map>
    #include<set>
    #include<stack>
    #include<list>
    #include<queue>
    #include<ctime>
    #include<bitset>
    #include<cmath>
    #define eps 1e-6
    #define INF 0x3f3f3f3f
    #define PI acos(-1.0)
    #define ll __int64
    #define LL long long
    #define lson l,m,(rt<<1)
    #define rson m+1,r,(rt<<1)|1
    #define M 1000000007
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    using namespace std;
    
    #define Maxn 25
    ll C[Maxn][Maxn];
    struct PP
    {
        ll a,b;
    }B[Maxn],ans[Maxn];
    
    ll k;
    
    ll gcd(ll a,ll b)
    {
        if(a%b==0)
        {
            if(b>0)
                return b;
            return -b;
        }
    
        return gcd(b,a%b);
    }
    
    PP add(PP a,PP b) //模拟两个分数的加法
    {
        if(!a.a) //假设有一个为0
            return b;
        if(!b.a)
            return a;
    
        ll temp=a.b/gcd(a.b,b.b)*b.b; //求出分母的最小公倍数
        //printf("%I64d
    ",temp);
        PP res;
        res.a=temp/a.b*a.a+temp/b.b*b.a; //分子相加
        res.b=temp;
    
        if(res.a)  //约掉最大公约数
        {
            ll tt=gcd(res.a,res.b);
            res.b/=tt;
            res.a/=tt;
        }
        return res;
    
    }
    
    void init()
    {
        memset(C,0,sizeof(C));
    
        for(int i=0;i<=25;i++)
        {
            C[i][0]=1;
            for(int j=1;j<i;j++)
                C[i][j]=C[i-1][j]+C[i-1][j-1];
            C[i][i]=1;
        }
        B[0].a=1,B[0].b=1;  //求伯努利数
    
        for(int i=1;i<=20;i++)  //用递推关系求
        {
            PP temp;
            temp.a=0;
            temp.b=0;
    
            for(int j=0;j<i;j++)
            {
                PP tt=B[j];
    
                tt.a=tt.a*C[i+1][j];
                //printf("::::%I64d %I64d:
    ",tt.a,tt.b);
                if(tt.a)
                {
                    ll te=gcd(tt.a,tt.b);
                    tt.a/=te;
                    tt.b/=te;
                }
    
                temp=add(temp,tt);
    
                //printf("i:%d j:%d %I64d %I64d:
    ",i,j,temp.a,temp.b);
                //system("pause");
            }
    
            temp.a=-temp.a;
            temp.b*=C[i+1][i];
            //printf("%I64d %I64d
    ",temp.a,temp.b);
            //system("pause");
    
            //printf("%I64d
    ",gcd(temp.a,temp.b));
            if(temp.a)
            {
                ll te=gcd(temp.a,temp.b);
                temp.a/=te;
                temp.b/=te;
            }
            else
                temp.b=0;
            B[i]=temp;
            //printf("i:%d %I64d %I64d
    ",i,B[i].a,B[i].b);
            //system("pause");
        }
    }
    
    
    
    int main()
    {
       //freopen("in.txt","r",stdin);
       //freopen("out.txt","w",stdout);
    
       //printf("%I64d
    ",gcd(-6,12));
    
       init();
       while(~scanf("%I64d",&k))
       {
    
           ll cur=1;
    
           for(int i=0;i<=k;i++)
           {
               if(i==1)
               {
                   ans[i].a=k+1;  //B[1]=-1/2要加上后面多出来的n^k
                   ans[i].b=2;
               }
               else
               {
                   ans[i]=B[i];
                   ans[i].a*=C[k+1][i];
               }
    
               if(ans[i].a) //约分
               {
                   ll temp=gcd(ans[i].a,ans[i].b);
                   ans[i].a/=temp;
                   ans[i].b/=temp;
               }
               else
                    ans[i].b=0;
               if(ans[i].b) //求分母的最小公倍数
                    cur=cur/gcd(cur,ans[i].b)*ans[i].b;
    
           }
           printf("%I64d ",cur*(k+1));
           //printf("->%I64d %I64d %I64d
    ",cur,ans[0].a,ans[0].b);
           for(int i=0;i<=k;i++) //求出通分后每个系数
           {
               if(ans[i].b)
                   ans[i].a=cur/ans[i].b*ans[i].a;
                   //printf("i:%d %I64d
    ",i,ans[i].a);
           }
           for(int i=0;i<=k;i++)
                printf("%I64d ",ans[i].a);
           printf("0
    "); //最后一个肯定是0
       }
       return 0;
    }
    
    
    
    
    
    



查看全文
  • 相关阅读:
    Windows 10 IoT Core 17101 for Insider 版本更新
    Windows 10 IoT Core 17093 for Insider 版本更新
    Windows 10 IoT Serials 10 – 如何使用OCR引擎进行文字识别
    2017年全国大学生物联网设计竞赛(TI杯)华东分赛区决赛总结
    Windows 10 IoT Core 17083 for Insider 版本更新
    My Feedback for Windows 10 IoT Core on Feedback Hub App (4/1/2017-1/23/2018)
    为 Azure IoT Edge 设备部署 Azure Stream Analytics 服务
    Azure IoT Edge on Raspberry Pi 3 with Raspbian
    Azure IoT Edge on Windows 10 IoT Core
    Mixed Reality-宁波市VR/AR技术应用高研班总结
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10888983.html
  • Copyright © 2011-2022 走看看