http://poj.org/problem?id=3295
借助的是大神的解题报告的写法。
大致题意:
输入由p、q、r、s、t、K、A、N、C、E共10个字母组成的逻辑表达式。
当中p、q、r、s、t的值为1(true)或0(false),即逻辑变量;
K、A、N、C、E为逻辑运算符,
K --> and: x && y
A --> or: x || y
N --> not : !x
C --> implies : (!x)||y
E --> equals : x==y
问这个逻辑表达式是否为永真式。
PS:输入格式保证是合法的。
代码操作:
1、把变量(p,q,r,s,t)替换成0,1。
(替换有规律。见数组num。共32中可能);
2、用栈将字符串倒序当后缀式运算。
3、推断运算完毕后栈底元素是否为1,假设不为0跳出输出not。
4、若32种可能都为1。则输出tautology;
#include<string.h>
#include<stdio.h>
const int maxn=120;
int sta[maxn]; //数组模拟堆栈
char str[maxn];
int p,q,r,s,t;
void doit()
{
int top=0;
int len=strlen(str);
for(int i=len-1;i>=0;i--)
{
if(str[i]=='p') sta[top++]=p;
else if(str[i]=='q') sta[top++]=q;
else if(str[i]=='r') sta[top++]=r;
else if(str[i]=='s') sta[top++]=s;
else if(str[i]=='t') sta[top++]=t;
else if(str[i]=='K')
{
int t1=sta[--top];
int t2=sta[--top];
sta[top++]=(t1&&t2);
}
else if(str[i]=='A')
{
int t1=sta[--top];
int t2=sta[--top];
sta[top++]=(t1||t2);
}
else if(str[i]=='N')
{
int t1=sta[--top];
sta[top++]=(!t1);
}
else if(str[i]=='C')
{
int t1=sta[--top];
int t2=sta[--top];
if(t1==1&&t2==0) sta[top++]=0;
else sta[top++]=1;
}
else if(str[i]=='E')
{
int t1=sta[--top];
int t2=sta[--top];
if((t1==1&&t2==1)||(t1==0&&t2==0)) sta[top++]=1;
else sta[top++]=0;
}
}
}
bool solve()
{ //5重循环,枚举2^5 32种可能 假设都满足 return 1
for(p=0;p<2;p++)
for(q=0;q<2;q++)
for(r=0;r<2;r++)
for(s=0;s<2;s++)
for(t=0;t<2;t++)
{
doit();
if(sta[0]==0)return 0;
}
return 1;
}
int main()
{
while(scanf("%s",&str))
{
if(strcmp(str,"0")==0)break;
if(solve()) printf("tautology
");
else printf("not
");
}
return 0;
}